cart-icon Товаров: 0 Сумма: 0 руб.
г. Нижний Тагил
ул. Карла Маркса, 44
8 (902) 500-55-04

Примеры с ответами – Примеры по математике для учеников 1,2,3,4,.. классов.

Содержание

Примеры математических задач

Добрый день, дорогие друзья! Сегодня мы приготовили для вас тест, в котором собраны простые математические примеры, которые можно щелкать как орешки, если в школе вы хотя бы бывали

Добрый день, дорогие друзья! Сегодня мы приготовили для вас тест, в котором собраны простые математические примеры, которые можно щелкать как орешки, если в школе вы хотя бы бывали Решение математических примеров вам понравится

В школе нам казалось, что решение математических примеров иногда очень даже сложное занятие, но сейчас, когда мы прошли огонь, воду и медные трубы, Вам уже ничего не страшно Обычные процедуры: вычитание, сложение, умножение, деление, ну и немного квадратных корней — вот всё, что сегодня Вы увидите в тесте По нашему мнению, тест получился достаточно простым, но в то же время интересным, потому что поможет расшевелить залежалый мозг, который не считает ничего более, чем скидку в магазине продуктов

Кстати, ученые выяснили, что решая простые примеры с утра, мы помогаем головному мозгу проснуться и работать более активно, чем обычно. Поэтому, если вы проснулись недавно, мы поможем вам проснуться не хуже, чем чашка кофе. Математические примеры с ответами ждут Вас, вперед!

Какой ответ верный?

Далее >>

Какой ответ верный?

Далее >>

Какой ответ верный?

Далее >>

Какой ответ верный?

Далее >>

Какой ответ верный?

Далее >>

Какой ответ верный?

Далее >>

Какой ответ верный?

Далее >>

Какой ответ верный?

Далее >>

Какой ответ верный?

Далее >>

Какой ответ верный?

Далее >>

Тест с математическими примерами

Отлично, 5!

Вы математический гений, поздравляем! Не забудьте поделиться результатом с друзьями, пусть завидуют

Поделитесь результатом с друзьями:

Facebook Twitter VK Тест с математическими примерами

Хорошо, 4!

Вы справились на 4+, поздравляем! Не забудьте поделиться результатом с друзьями, пусть завидуют

Поделитесь результатом с друзьями:

Facebook Twitter VK Тест с математическими примерами

Хорошо, 4!

Вы неплохо справились с поставленными задачами Не забудьте поделиться результатом с друзьями, пусть завидуют

Поделитесь результатом с друзьями:

Facebook Twitter VK Тест с математическими примерами

Школа была давно?..)

Не расстраивайтесь, не везет в математике — повезет в любви Не забудьте поделиться тестом с друзьями, пусть они тоже попробуют свои силы

Поделитесь результатом с друзьями:

Facebook Twitter VK

 PLAY AGAIN !

Еще интересные тесты:

smtimes.ru

Математические примеры онлайн

Математически примеры онлайн — это прекрасная возможность для младших школьников поупражняться в своих знаниях математики. Ведь в этих заданиях нужно уметь быстро решать примеры, ведь на прохождение каждого задания выделяется определенное время. Когда время заканчивается, то вам засчитываются очки только за те примеры, на которые ребенок успел дать ответ.

В этом разделе мы будем выкладывать математические примеры онлайн на сложение и вычитание до 100. Пусть ребенок выполняет задания до тех пор, пока у него не будет ни одной ошибки. Кстати, в занятии он может воспользоваться подсказкой, которая добавит одну неизвестную цифру. Но учтите, при использовании подсказок ребенок теряет очки и за выполнение задания он уже не получит 100% результат. Объясните это ему сразу, чтобы не было искушения часто нажимать на подсказку. Нужно стремиться к тому, чтобы все примеры были решены правильно, без использования подсказок, вложившись в заданное время.

Также вам будут интересны и другие разделы с математикой:

Развивающие игры «Математика для малышей». Разработаны детским порталом Чудо-Юдо специально для самых маленьких детей (от 2-х лет), которые только начинают учиться считать до 10. Такие игры способствуют более быстрому запоминанию цифр, а также позволяют ребенку понять сложную для его возраста технологию счета.

Математические игры для детей от 4 до 6 лет созданы с целью подготовки дошкольника к первым математическим познаниям и умению считать. Здесь вас ждут интересные красочные игры, в которых ребенку нужно будет найти и посчитать указанное количество предметов или живых существ. Детям этого возраста очень нравится считать, особенно в игровой форме.

Математика для детей — Распечатай и занимайся. Здесь вы можете найти массу полезных материалов на тему «Математика для детей», которые можно распечатать на принтере и заниматься с детьми, как в домашних условиях, так и в дошкольных и школьных учреждениях.

chudo-udo.info

Действия с дробями, подробно с примерами

Действия с дробями. В этой статье разберём примеры, всё подробно с пояснениями. Рассматривать будем обыкновенные дроби. В дальнейшем разберём и десятичные. Рекомендую посмотреть весь список материалов и изучать последовательно.

1. Сумма дробей, разность дробей.

Правило: при сложении дробей с равными знаменателями, в результате получаем дробь – знаменатель которой остаётся тот же, а числитель её будет равен сумме числителей дробей.

Правило: при вычислении разности дробей с одинаковыми знаменателями получаем дробь  – знаменатель остаётся тот же, а из числителя первой дроби вычитается числитель второй.

Формальная запись суммы и разности дробей с равными знаменателями:

Примеры (1):

Понятно, что когда даны обыкновенные дроби, то всё просто, а если смешанные? Ничего сложного…

Вариант 1 – можно перевести их в обыкновенные и далее вычислять.

Вариант 2 – можно отдельно «работать» с целой и дробной частью.

Примеры (2):

Ещё:

А если будет дана разность двух смешанных дробей и числитель первой дроби будет меньше числителя второй? Тоже можно действовать двумя способами.

Примеры (3):

*Перевели в обыкновенные дроби, вычислили разность, перевели полученную неправильную дробь в смешанную.

*Разбили на целые и дробные части, получили тройку, далее представили 3 как сумму 2 и 1, при чём единицу представили как 11/11, далее нашли разность 11/11 и 7/11 и вычислили результат. Смысл изложенных преобразований заключается в том, чтобы взять (выделить) единицу и представить её в виде дроби с нужным нам знаменателем, далее от этой дроби мы уже можем вычесть другую.

Ещё пример:

 

Вывод: имеется универсальный подход  – для того, чтобы вычислить сумму (разность) смешанных дробей с равными знаменателями их всегда можно перевести в неправильные, далее выполнить необходимое действие. После этого если в результате получаем неправильную дробь переводим её в смешанную.

Выше мы рассмотрели примеры с дробями, у которых равные знаменатели.  А если знаменатели будут отличаться? В этом случае дроби приводятся к одному знаменателю и выполняется указанное действие. Для изменения (преобразования) дроби используется основное свойство дроби.

Рассмотрим простые примеры:

В данных примерах мы сразу видим каким образом можно преобразовать одну из дробей, чтобы получить равные знаменатели.

Если обозначить способы приведения дробей к одному знаменателю, то этот назовём СПОСОБ ПЕРВЫЙ.

То есть, сразу при «оценке» дроби нужно прикинуть сработает ли такой подход – проверяем делится ли больший знаменатель на меньший. И если делится, то выполняем преобразование — домножаем числитель и знаменатель так чтобы у обеих дробей знаменатели стали равными.

Теперь посмотрите на эти примеры:

К ним указанный подход не применим. Существуют ещё способы приведения дробей к общему знаменателю, рассмотрим их.

Способ ВТОРОЙ.

Умножаем числитель и знаменатель первой дроби на знаменатель второй, а числитель и знаменатель второй дроби на знаменатель первой:

*Фактически мы приводим дроби к виду, когда знаменатели становятся равными. Далее используем правило сложения робей с равными знаменателями.

Пример:

*Данный способ можно назвать универсальным, и он работает всегда. Единственный минус в том, что после вычислений может получится дробь которую необходимо будет ещё сократить.

Рассмотрим пример:

Видно что числитель и знаменатель делится на 5:

Способ ТРЕТИЙ.

Необходимо найти наименьшее общее кратное (НОК) знаменателей. Это и будет общий знаменатель. Что это за число такое? Это наименьшее натуральное число, которое делится на каждое из чисел.

Посмотрите, вот два числа: 3 и 4, есть множество чисел, которые делятся на них – это 12, 24, 36, … Наименьшее из них 12. Или 6 и 15, на них делятся 30, 60, 90 …. Наименьшее 30. Вопрос – а как определить это самое наименьшее общее кратное?

Имеется чёткий алгоритм, но часто это можно сделать и сразу без вычислений. Например, по указанным выше примерам (3 и 4, 6 и 15) никакого алгоритма не надо, мы взяли большие числа (4 и 15) увеличили их в два раза и увидели, что они делятся на второе число, но  пары чисел могут быть и другими, например 51 и 119.

Алгоритм. Для того, чтобы определить наименьшее общее кратное нескольких чисел, необходимо:

— разложить каждое из чисел на ПРОСТЫЕ множители

— выписать разложение БОЛЬШЕГО из них

— умножить его на НЕДОСТАЮЩИЕ множители других чисел

Рассмотрим примеры: 

50 и 60   =>  50 = 2∙5∙5    60 = 2∙2∙3∙5

в разложении большего числа не хватает одной пятёрки

 =>   НОК(50,60) = 2∙2∙3∙5∙5 = 300

48 и 72   =>   48 = 2∙2∙2∙2∙3    72 = 2∙2∙2∙3∙3            

в разложении большего числа не хватает двойки и тройки

=>   НОК(48,72) = 2∙2∙2∙2∙3∙3 = 144

* Наименьшее общее кратное двух простых чисел равно их произведению

Вопрос! А чем полезно нахождение наименьшего общего кратного, ведь можно пользоваться вторым способом и полученную дробь просто сократить? Да, можно, но это не всегда удобно. Посмотрите, какой получится знаменатель для чисел 48 и 72, если их просто перемножить 48∙72 = 3456. Согласитесь, что приятнее работать с меньшими числами.

Рассмотрим примеры:

*51 = 3∙17    119 = 7∙17

в разложении большего числа не хватает тройки

 =>   НОК(51,119) = 3∙7∙17

А теперь применим первый способ:

*Посмотрите какая разница в вычислениях, в первом случае их минимум, а во втором нужно потрудиться отдельно на листочке, да ещё и дробь которую получили сократить необходимо. Нахождение НОК упрощает работу значительно.

Ещё примеры:

*Во втором примере и так видно, что наименьшее число, которое делится на 40 и 60 равно 120.

ИТОГ! ОБЩИЙ АЛГОРИТМ ВЫЧИСЛЕНИЙ!

— приводим дроби к обыкновенным, если есть целая часть.

— приводим дроби к общему знаменателю (сначала смотрим делится ли один знаменатель на другой, если делится то умножаем числитель и знаменатель этой другой дроби; если не делится действуем посредством других указанных выше способов).

— получив дроби с равными знаменателями, выполняем действия (сложение, вычитание).

— если необходимо, то результат сокращаем.

— если необходимо, то выделяем целую часть.

2. Произведение дробей.

Правило простое. При умножении дробей умножаются их числители и знаменатели:

Примеры:

Если есть возможность сократить дробь на стадии вычисления, то лучше это сделать:

Ещё правило относящееся к умножению!

Примеры, которые мы уже рассмотрели:

Определить, сколько составляет 3/7 от числа 63?

Задача. Весь путь составляет 180 километров. Турист в первый день прошёл 3/10 пути. Сколько километров турист прошёл в первый день?

Задача. На базу привезли 13 тонн овощей. Картофель составляет ¾ от всех завезённых овощей. Сколько килограмм  картофеля завезли на базу?

С произведением закончим.

*Ранее обещал вам привести формальное объяснение основного свойства дроби через произведение, пожалуйста:

3. Деление дробей.

Деление дробей сводится к их умножению. Здесь важно запомнить, что дробь являющаяся делителем (та, на которую делят) переворачивается и действие меняется на умножение:

Данное действие может быть записано в виде так называемой четырёхэтажной дроби, ведь само деление «:» тоже можно записать как дробь:

Примеры:

На этом всё! Успеха вам!

С уважением, Александр Крутицких.

Делитесь информацией в социальных сетях.

matematikalegko.ru

Более сложные примеры уравнений | Математика

52. Более сложные примеры уравнений.
Пример 1.

5/(x – 1) – 3/(x + 1) = 15/(x2 – 1)

Общий знаменатель есть x2 – 1, так как x2 – 1 = (x + 1)(x – 1). Умножим обе части этого уравнения на x2 – 1. Получим:

или, после сокращения,

5(x + 1) – 3(x – 1) = 15

или

5x + 5 – 3x + 3 = 15

или

2x = 7 и x = 3½

Рассмотрим еще уравнение:

5/(x-1) – 3/(x+1) = 4(x2 – 1)

Решая, как выше, получим:

5(x + 1) – 3(x – 1) = 4
5x + 5 – 3x – 3 = 4 или 2x = 2 и x = 1.

Посмотрим, оправдываются ли наши равенства, если заменить в каждом из рассмотренных уравнений x найденным числом.

Для первого примера получим:

Видим, что здесь нет места никаким сомнениям: мы нашли такое число для x, что требуемое равенство оправдалось.

Для второго примера получим:

5/(1-1) – 3/2 = 15/(1-1) или 5/0 – 3/2 = 15/0

Здесь возникают сомнения: мы встречаемся здесь с делением на нуль, которое невозможно. Если в будущем нам удастся придать определенный, хотя бы и косвенный, смысл этому делению, то тогда мы можем согласиться с тем, что найденное решение x – 1 удовлетворяет нашему уравнению. До этой же поры мы должны признать, что наше уравнение вовсе не имеет решения, имеющего прямой смысл.

Подобные случаи могут иметь место тогда, когда неизвестное входит как-либо в знаменатели дробей, имеющихся в уравнении, причем некоторые из этих знаменателей, при найденном решении, обращаются в нуль.

Пример 2.

(x + 3)/(x – 1) = (2x + 3)/(2x – 2)

Можно сразу видеть, что данное уравнение имеет форму пропорции: отношение числа x + 3 к числу x – 1 равно отношению числа 2x + 3 к числу 2x – 2. Пусть кто-либо, в виду такого обстоятельства, решит применить сюда для освобождения уравнения от дробей основное свойство пропорции (произведение крайних членов равно произведению средних). Тогда он получит:

(x + 3) (2x – 2) = (2x + 3) (x – 1)

или

2x2 + 6x – 2x – 6 = 2x2 + 3x – 2x – 3.

Здесь может возбудить опасения, что мы не справимся с этим уравнением, то обстоятельство, что в уравнение входят члены с x2. Однако, мы можем от обеих частей уравнения вычесть по 2x2 — от этого уравнение не нарушится; тогда члены с x

2 уничтожатся, и мы получим:

6x – 2x – 6 = 3x – 2x – 3

Перенесем неизвестные члены влево, известные вправо — получим:

3x = 3 или x = 1

Вспоминая данное уравнение

(x + 3)/(x – 1) = (2x + 3)/(2x – 2)

мы сейчас же подметим, что найденное значение для x (x = 1) обращает в нуль знаменателей каждой дроби; от такого решения мы, пока не рассмотрели вопроса о делении на нуль, должны отказаться.

Если мы подметим еще, что применение свойства пропорции усложнило дело и что можно было бы получить более простое уравнение, умножая обе части данного на общий знаменатель, а именно на 2(x – 1) — ведь 2x – 2 = 2 (x – 1), то получим:

2(x + 3) = 2x – 3 или 2x + 6 = 2x – 3 или 6 = –3,

что невозможно.

Это обстоятельство указывает, что данное уравнение не имеет таких, имеющих прямой смысл решений, которые не обращали бы знаменателей данного уравнения в нуль.
Решим теперь уравнение:

(3x + 5)/(x – 1) = (2x + 18)/(2x – 2)

Умножим обе части уравнения 2(x – 1), т. е. на общий знаменатель, получим:

6x + 10 = 2x + 18

или

4x = 8 и x = 2

Найденное решение не обращает в нуль знаменатель и имеет прямой смысл:

или 11 = 11

Если бы кто-либо, вместо умножения обеих частей на 2(x – 1), воспользовался бы свойством пропорции, то получил бы:

(3x + 5)(2x – 2) = (2x + 18)(x – 1) или
6x2 + 4x – 10 = 2x2 + 16x – 18.

Здесь уже члены с x2 не уничтожались бы. Перенеся все неизвестные члены в левую часть, а известные в правую, получили бы

4x2 – 12x = –8

или

x2 – 3x = –2

Это уравнение мы теперь решить не сумеем. В дальнейшем мы научимся решать такие уравнения и найдем для него два решения: 1) можно взять x = 2 и 2) можно взять x = 1. Легко проверить оба решения:

1) 22 – 3 · 2 = –2 и 2) 12 – 3 · 1 = –2

Если мы вспомним начальное уравнение

(3x + 5) / (x – 1) = (2x + 18) / (2x – 2),

то увидим, что теперь мы получим оба его решения: 1) x = 2 есть то решение, которое имеет прямой смысл и не обращает знаменателя в нуль, 2) x = 1 есть то решение, которое обращает знаменателя в нуль и не имеет прямого смысла.

Пример 3.

Найдем общего знаменателя дробей, входящих в это уравнение, для чего разложим на множители каждого из знаменателей:

1) x2 – 5x + 6 = x2 – 3x – 2x + 6 = x(x – 3) – 2(x – 3) = (x – 3)(x – 2),

2) x2 – x – 2 = x2 – 2x + x – 2 = x (x – 2) + (x – 2) = (x – 2)(x + 1),

3) x2 – 2x – 3 = x2 – 3x + x – 3 = x (x – 3) + (x – 3) = (x – 3) (x + 1).

Общий знаменатель равен (x – 3)(x – 2)(x + 1).

Умножим обе части данного уравнения (а его мы теперь можем переписать в виде:

на общего знаменателя (x – 3) (x – 2) (x + 1). Тогда, после сокращения каждой дроби получим:

3(x + 1) – 2(x – 3) = 2(x – 2) или
3x + 3 – 2x + 6 = 2x – 4.

Отсюда получим:

–x = –13 и x = 13.

Это решение имеет прямой смысл: оно не обращает в нуль ни одного из знаменателей.

Если бы мы взяли уравнение:

то, поступая совершенно так же, как выше, получили бы

3(x + 1) – 2(x – 3) = x – 2

или

3x + 3 – 2x + 6 = x – 2

или

3x – 2x – x = –3 – 6 – 2,

откуда получили бы

0 = –11,

что невозможно. Это обстоятельство показывает, что нельзя найти для последнего уравнения решения, имеющего прямой смысл.

maths-public.ru

Решение задач онлайн

Решение Ваших математических задач в онлайн режиме. Бесплатная версия программы предоставляет Вам только ответы. Если вы хотите увидеть полное решение, Вы должны зарегистрироваться для бесплатной полной пробной версии.

Основы математики

Онлайн программа решения математических задач предлагает Вам решение в режиме онлайн задач с дробями, корнями, метрическими преобразованиями.
Вы можете найти площадь и объем прямоугольника, окружности, треугольника, трапеции, куба, цилиндра, конуса, пирамиды, шара.
Вы можете упростить, найти значение, объединять и умножать выражения.

Онлайн программа решения задач курса предварительной алгебры (геометрии)

Вы можете решать все задачи с основного раздела математики а также координатных задач, простых уравнений, неравенств, упрощать выражения.
Вы можете подсчитывать выражения, объединить выражения и умножать / делить выражения.

Онлайн программа решения задач по алгебре

Мы рекомендуем Вам зарегистрироваться для этой онлайн программы.
Решите Ваши задачи (уравнения, неравенства, радикалы, построение графиков, решение полиномов) в онлайн режиме.
Если Ваша домашняя работа включает в себя математические уравнения, неравенства, функции, многочлены, матрицы, значит регистрация для тестовой версии — это правильный выбор.

Онлайн программа решения задач по тригонометрии

Находит значения всех типов выражений (синус, косинус, тангенс, котангенс, секанс, косеканс), уравнений, неравенств.
Строит графики тригонометрических функций.
Тригонометрия прямоугольного треугольника.

Онлайн программа решения задач курса предварительной алгебры

Включает в себя все вышеперечисленное функции плюс нахождение пределов (LIM), сумм, матриц.

Онлайн программа решения задач курса высшей математики

Решение задач c определенными, неопределенными интегралами.

Онлайн программа решения статистических задач

Решайте задач с нахождением вероятности, комбинаторные задачи. Статистические задачи — найти среднее (арифметическое, геометрическое, квадратическое) значение, распределение, нормальное распределение, т-распределение.
Онлайн программа успешно проводит тестирование статистических гипотез

www.math10.com

примеры решения производных

Производная функции является основным понятием дифференциального исчисления. Она характеризует скорость изменения функции в указанной точке. Производная широко используется при решении целого ряда задач по математике, физике и другим наукам, в особенности при изучении скорости различного рода процессов. Именно поэтому мы собрали на сайте более 200 примеров решения производных и постоянно добавляем новые! Список тем находится в правом меню.

Перед изучением примеров вычисления производных советуем изучить теоретический материал по теме: прочитать определения, правила дифференцирования, таблицу производных и другой материал по производным.


Таблица производных и правила дифференцирования

Основные ссылки — таблица производных, правила дифференцирования и примеры решений (10 шт).

Пример

Задание. Найти производную функции

Решение. Так как производная суммы равна сумме производных, то

Воспользуемся формулами для производных показательной и обратной тригонометрической функций:

Ответ.

Больше примеров решений →


Производные сложных функций

Основные ссылки — теоретический материал и примеры решений (10 шт).

Пример

Задание.Найти производную функции

Решение. По правилу дифференцирования сложной функции:

В свою очередь производная также берется по правилу дифференцирования сложной функции:

Ответ.

Больше примеров решений →


Применение дифференциала в приближенных вычислениях

Основные ссылки — теоретический материал и примеры решений (10 шт).

Больше примеров решений →


Геометрический смысл производной

Основные ссылки — теоретический материал и примеры решений (10 шт).

Больше примеров решений →


Механический смысл производной

Основные ссылки — теоретический материал и примеры решений (10 шт).

Пример

Задание. Точка движется по закону . Чему равна скорость в момент времени ?

Решение. Найдем скорость точки как первую производную от перемещения:

В момент времени скорость равна

Ответ.

Больше примеров решений →


Уравнение касательной, нормали и угол между прямыми

Основные ссылки — теоретический материал и примеры решений (10 шт).

Пример

Задание. Записать уравнение касательной к графику функции в точке

Решение. Найдем значение функции в заданной точке:

Найдем производную заданной функции по правилу дифференцирования произведения:

Вычислим её значение в заданной точке

Используя формулу

запишем уравнение касательной:

Ответ. Уравнение касательной:

Больше примеров решений →


Производные высших порядков

Основные ссылки — теоретический материал и примеры решений (10 шт).

Пример

Задание. Найти производную второго порядка от функции

Решение. Находим первую производную как производную сложной функции:

Вторую производную находим как от произведения, предварительно вынеся по правилам дифференцирования коэффициент 3 за знак производной. Также будем учитывать, что первый множитель — — есть сложной функцией:

Ответ.

Больше примеров решений →


Механическое смысл второй производной

Основные ссылки — теоретический материал и примеры решений (10 шт).

Пример

Задание. Уравнение движения материальной точки вдоль оси имеет вид (м). Найти ускорение точки в момент времени c.

Решение. Ускорение заданной точки найдем, взяв вторую производную от перемещения по времени:

Первая производная

(м/с)

вторая производная

(м/с2)

В момент времени c

(м/с2)

Ответ. (м/с2)

Больше примеров решений →


Дифференциалы высших порядков

Основные ссылки — теоретический материал и примеры решений (10 шт).

Пример

Задание. Найти дифференциал третьего порядка функции

Решение. По формуле

Найдем третью производную заданной функции:

Тогда

Ответ.

Больше примеров решений →


Производная функции, заданной неявно

Основные ссылки — теоретический материал и примеры решений (10 шт).

Больше примеров решений →


Производная функции, заданной параметрически

Основные ссылки — теоретический материал и примеры решений (10 шт).

Больше примеров решений →


Логарифмическое дифференцирование

Основные ссылки — теоретический материал и примеры решений (10 шт).

Пример

Задание. Найти производную функции

Решение. Применим логарифмическое дифференцирование:

Тогда, продифференцировав левую и правую часть, будем иметь:

Отсюда получаем, что

Ответ.

Больше примеров решений →


Формулы Маклорена и Тейлора

Основные ссылки — теоретический материал и примеры решений (10 шт).

Больше примеров решений →

Вы поняли, как решать? Нет?

Помощь с решением

www.webmath.ru

Анаграммы с ответами — примеры

Анаграмма — это перестановка букв или звуков определённого слова. Чтобы решить заданную анаграмму, нужно прежде всего научиться правильно переставлять буквы местами. В результате чего получим ответ на зашифрованное слово (например: силица-лисица). Есть такие задания для детей, где зашифрованы целые предложения и даже тексты. Задания такого типа повышают грамотность ребёнка и увеличивают скорость его чтения. Наши современные детки не очень любят читать, они больше интересуются мультфильмами и компьютерными играми. Анаграммы с ответами (подробности на https://childdevelop.ru/generator/letters/anagram.html) – это хороший способ заинтересовать ребёнка чтением. Благодаря этому он станет больше интересоваться книгами.

Бывают зеркальные анаграммы. Здесь слова читаются задом наперед (например: сон-нос). Вспомним книгу и фильм из нашего детства «Королевство кривых зеркал», где школьница Оля перенеслась в волшебный зеркальный мир, где всё было наоборот. Эта книга полностью написана на использовании зеркальных анаграмм.

Анаграммы и ответы на них

Специальных правил как решать анаграммы нету. Лишь своим умом, воображением можно решать такие задачки. Нужно стараться пробовать разные варианты слов и всегда можно найти ответ.

Например: соль-лось, абрез-зебра, стаи-аист, полк-клоп, мокра-комар.

Выполнение таких заданий очень быстро поможет улучшить технику чтения нашим детям. Спустя время можно заметить, что стали читать быстрее.

Дети очень любят различные игры, а игровое обучение в нашей современной жизни всё быстрее и быстрее набирает популярность. Поэтому игровой процесс всегда заинтересует ребенка.

Анаграммы с ответами для детей

1. Животные: зока-коза, ворока-корова, босака-собака, рабан-баран, бакан-кабан, гнивпин-пингвин.

2. Птицы: колос-сокол, ровно-ворон, стаи-аист, сицина-синица, короса-сорока.

3. Пословицы:

Лам ад улад — Мал да удал

Шорохая гинак — чишлуй гурд — Хорошая книга-лучший друг.

Миза зеб зорома ен выбает — Зима без мороза не бывает.

Блех сумев волога — Хлеб всему голова.

Друт велочека мокрит, а нель торпит — Труд человека кормит, а лень портит.

Акк быра в дове — Как рыба в воде.

Ток зи мода — шимы в сляп — Кот из дома-мыши в пляс.

4. Зеркальные анаграммы с ответами: сон-нос, вор-ров, воз-зов, гам-маг, год-дог, вес-сев, бук-куб, клоп-полк, кот-ток.

Анаграммы с ответами Вы можете скачать на сайте Сhilddevelop. Для этого Вам понадобиться пару минут для регистрации, и затем огромное количество заданий к Вашим услугам!

mylnye-grezi.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *