Числовая окружность на координатной – Числовая окружность в координатной плоскости — урок. Алгебра, 10 класс.
Числовая окружность в координатной плоскости — урок. Алгебра, 10 класс.
Расположим числовую окружность в координатной плоскости так, чтобы центр окружности совместился с началом координат, а её радиус принимаем за единичный отрезок.
Начальная точка числовой окружности \(A\) совмещена с точкой \((1;0)\).
Каждая точка числовой окружности имеет в координатной плоскости свои координаты.
Найдём сначала координаты тех точек координатной плоскости, которые получены на макетах числовой окружности.
Точка Mπ4 — середина \(I\) четверти. Опустим перпендикуляр \(MP\) на прямую \(OA\) и рассмотрим треугольник \(OMP\). Так как дуга \(AM\) составляет половину дуги \(AB\), то ∡MOP=45°.
Значит, треугольник \( OMP \) — равнобедренный прямоугольный треугольник и \(OP = MP\), т. е. у точки \(M\) абсцисса и ордината равны: \(x = y\).
Так как координаты точки \(M(x;y)\) удовлетворяют уравнению числовой окружности x2+y2=1, то для их нахождения нужно решить систему уравнений: x2+y2=1x=y |
Подставив \(x\) вместо \(y\) в первое уравнение системы, получим следующее решение:
x2+x2=1;2×2=1;x2=12;x=12=22;y=x=22.
При решении учитываем, что абсцисса точки \(M\) положительна.
Получили, что координаты точки \(M\), соответствующей числу π4, будут Mπ4=M22;22.
Аналогично можно получить координаты и других точек первого макета числовой окружности, учитывая только знаки координат в каждой четверти.
Полученные результаты запишем в таблицу.
Точка окружности |
| \(0\) | π4 | π2 | 3π4 | π | 5π4 | 3π2 | 7π4 | 2π |
Абсцисса \(x\) | \(1\) | 22 | \(0\) | −22 | \(-1\) | −22 | \(0\) | 22 | \(1\) |
Ордината \(y\) | \(0\) | 22 | \(1\) | 22 | \(0\) | −22 | \(-1\) | −22 | \(0\) |
Рассуждаем аналогично для точки \(M\), если теперь она соответствует числу π6.
Треугольник \(MOP\) прямоугольный. Так как дуга \(AM\) составляет третью часть дуги \(AB\), то ∡MOP=30°.
Катет \(MP\) лежит против угла \(30\) градусов в прямоугольном треугольнике, значит, равен половине гипотенузы, т. е. ордината точки \(M\) равна MP=12;y=12 |
Абсциссу \(x\) точки \(M\) найдём, решив уравнение:
x2+y2=1;
x2=1−122=1−14=34;x=32.
При решении учитываем, что абсцисса точки \(M\) положительна.
Получили, что координаты точки \(M\), соответствующей числу π6, будут Mπ6=M32;12.
Аналогично можно получить координаты и других точек второго макета числовой окружности, учитывая только знаки координат в каждой четверти.
Полученные результаты запишем в таблицу.
Точка окружности |
π6 | π3 | 2π3 | 5π6 | 7π6 | 4π3 | 5π3 | 11π6 | |
Абсцисса \(x\) | 32 | 12 | −12 | −32 | −32 | −12 | 12 | 32 |
Ордината \(y\) | 12 | 32 | 32 | 12 | −12 | −32 | −32 | −12 |
www.yaklass.ru
10 класс. Алгебра. Тригонометрические функции. Числовая окружность. — Числовая окружность. Числовая окружность на координатной плоскости.
Комментарии преподавателя
Для любой функции независимый аргумент откладывается либо на числовой прямой, либо на окружности. Охарактеризуем и числовую прямую, и числовую окружность.
Прямая становится числовой (координатной) прямой, если отмечено начало координат, выбраны направление и масштаб (рис. 1).
Числовая прямая устанавливает взаимно-однозначное соответствие между всеми точками прямой и всеми действительными числами.
Например, берем число откладываем на координатной оси, получаем точку Возьмем число откладываем на оси, получаем точку (рис. 2).
И наоборот, если мы взяли любую точку на координатной прямой, то найдется единственное соответствующее ей действительное число (рис. 2).
К такому соответствию люди пришли не сразу. Чтобы понять это, вспомним основные числовые множества.
Сначала ввели множество натуральных чисел
Затем множество целых чисел
Множество рациональных чисел
Предполагалось, что этих множеств будет достаточно, и существует взаимно-однозначное соответствие между всеми рациональными числами и точками прямой. Но оказалось, что на числовой прямой есть бесчисленное множество точек, которые нельзя описать числами вида
Пример – гипотенуза прямоугольного треугольника с ка
www.kursoteka.ru
Конспект уроков «Числовая окружность на координатной плоскости»
Название предмета Алгебра и начала математического анализа
Класс 10
УМК Алгебра и начала математического анализа, 10-11 классы. В 2 . Ч.1. Учебник для общеобразовательных учреждений(базовый уровень) /А.Г. Мордкович. – 10-еизд., стер.- М.: Мнемозина,2012. Ч.2. Задачник для общеобразовательных учреждений(базовый уровень) /[А.Г. Мордкович и др.]; под ред. А.Г. Мордковича. – 10-еизд., стер.- М.: Мнемозина,2012.
Уровень обучения. Базовый
Тема урока Числовая окружность на координатной плоскости (3 часа)
Урок №1
Цели: ввести понятие модели числовой окружности в декартовой и криволинейной системе координат.
Задачи: формировать умение находить декартовы координаты точек числовой окружности и выполнять обратное действие: зная декартовы координаты точки, определять её числовое значение на числовой окружности.
Развивать вычислительные навыки, правильную математическую речь, логическое мышление учащихся.
Прививать самостоятельность, внимание и аккуратность. Воспитывать ответственное отношение к обучению.
Планируемые результаты:
Знать, понимать: — числовая окружность.
Уметь: — находить на окружности точки по заданным координатам; — находить координаты точки, расположенной на числовой окружности.
Уметь применять изученный теоретический материал при выполнении письменной работы.
Техническое обеспечение урока Компьютер, экран, проектор, учебник, задачник.
Дополнительное методическое и дидактическое обеспечение урока: Мордкович А. Г. М79 Алгебра и начала математического анализа. 10— 11 классы (базовый уровень) : методическое пособие для учителя / А. Г. Мордкович, П. В. Семенов. — М. : Мнемози- на, 2010. — 202 с. : ил
Ход урока
Организационный момент.
Психологический настрой учащихся.
Проверка домашнего задания 1. № 4.17 (в; г), № 4.18 (в; г), № 4.19 (в; г), № 4.20 (в; г).Разобрать решение заданий вызвавших затруднение.
II. Устная работа.
(На слайде)
1. Назовите координаты точек плоскости:
2. Назовите число, соответствующее заданной точке на числовой окружности.
III. Объяснение нового материала.
1. Объяснение проводить согласно пункту учебника. Разместив числовую окружность в декартовой системе координат, следует подробно разобрать свойства точек числовой окружности, находящихся в различных координатных четвертях. Дело в том, что, изучая данную модель, учащиеся сталкиваются с определенными трудностями. Им необходимо учиться работать одновременно в двух системах координат – криволинейной и декартовой.
Для преодоления этой трудности авторы учебника применяют следующий методический прием: для точки М числовой окружности используют запись М(t), если речь идет о криволинейной координате точки М, или запись М (х; у), если речь идет о декартовых координатах точки.
(Мордкович А. Г. М79 Алгебра и начала математического анализа. 10— 11 классы (базовый уровень) : методическое пособие для учителя / А. Г. Мордкович, П. В. Семенов. — М. : Мнемози- на, 2010. — 202 с. : ил.)
2. Проводим 7-ю методическую «игру» – отыскание декартовых координат «хороших» точек числовой окружности. Речь идет о переходе от записи М(t) к М (х; у).
Можно организовать работу в парах с последующей самопроверкой (верные ответы в таблице 1 со с. 38 учебника).
3. Проводим 8-ю методическую «игру» – отыскание знаков координат «плохих» точек числовой окружности. Если, например, М(2) = М (х; у), то х 0; у 0. В процессе этой «игры» школьники фактически учатся определять знаки тригонометрических функций по четвертям числовой окружности.
Динамическая пауза
IV. Формирование умений и навыков.
1. № 5.1 (а; б), № 5.2 (а; б), № 5.3 (а; б).
Данная группа заданий направлена на формирование умения отыскивать декартовы координаты «хороших» точек на числовой окружности.
Решение:
№ 5.1 (а).
Эта группа заданий направлена на формирование умений находить криволинейные координаты точки по её декартовым координатам.
Решение:
№ 5.5 (б).
3. № 5.10 (а; б).
Данное упражнение направлено на формирование умения находить декартовы координаты «плохих» точек.
V. Итоги урока.
Вопросы учащимся:
– Что собой представляет модель – числовая окружность на координатной плоскости?
– Как, зная криволинейные координаты точки на числовой окружности, найти её декартовы координаты и наоборот?
Домашнее задание: , стр. 36. № 5.1 (в; г) – 5.5 (в; г), № 5.10 (в; г).
Урок №2
Цель: закрепить понятие модели числовой окружности в декартовой и криволинейной системе координат
Задачи: продолжить формирование умения переходить от криволинейных координат точки на числовой окружности к декартовым координатам; формировать умение отыскивать на числовой окружности точки, координаты которых удовлетворяют заданному уравнению или неравенству.
Развивать вычислительные навыки, правильную математическую речь, логическое мышление учащихся.
Прививать самостоятельность, внимание и аккуратность. Воспитывать ответственное отношение к обучению.
Планируемые результаты:
Знать, понимать: — числовая окружность.
Уметь: — находить на окружности точки по заданным координатам; — находить координаты точки, расположенной на числовой окружности.
Уметь применять изученный теоретический материал при выполнении письменной работы.
Дополнительное методическое и дидактическое обеспечение урока: Мордкович А. Г. М79 Алгебра и начала математического анализа. 10— 11 классы (базовый уровень) : методическое пособие для учителя / А. Г. Мордкович, П. В. Семенов. — М. : Мнемози- на, 2010. — 202 с. : ил
Ход урока
Организационный момент.
Психологический настрой учащихся.
Проверка домашнего задания № 5.1 (в; г) – 5.5 (в; г), № 5.10 (в; г).
Разобрать решение заданий вызвавших затруднение.
Устная работа.
(на слайде)
1. Назовите криволинейные и декартовы координаты точек на числовой окружности.
2. Сопоставьте дугу на окружности и её аналитическую запись.
аб
в
г
III. Объяснение нового материала.
1. На этом уроке учащиеся, по замыслу авторов учебника, отрабатывают две последние дидактические «игры», связанные с изучаемой моделью.
(Мордкович А. Г. М79 Алгебра и начала математического анализа. 10— 11 классы (базовый уровень) : методическое пособие для учителя / А. Г. Мордкович, П. В. Семенов. — М. : Мнемози- на, 2010. — 202 с. : ил.)
2. 9-я «игра» – отыскание на числовой окружности точек, координаты которых удовлетворяют заданному уравнению.
Рассматриваем примеры 2 и 3 со с. 41–42 учебника.
Важность этой «игры» очевидна: учащиеся готовятся к решению простейших тригонометрических уравнений вида Для понимания сути дела следует прежде всего научить школьников решать эти уравнения с помощью числовой окружности, не переходя к готовым формулам.
При рассмотрении примера на нахождение точки с абсциссой обращаем внимание учащихся на возможность объединения ддвух серий ответов в одну формулу:
3. 10-я «игра» – отыскание на числовой окружности точек, координаты которых удовлетворяют заданному неравенству.
Рассматриваем примеры 4–7 со с. 43–44 учебника. Решая подобные задачи, мы готовим учащихся к решению тригонометрических неравенств вида
После рассмотрения примеров учащиеся могут самостоятельно сформулировать алгоритм решения неравенств указанного типа:
1) от аналитической модели переходим к геометрической модели – дуга МР числовой окружности;
2) составляем ядро аналитической записи МР; для дуги получаем
3) составляем общую запись:
Динамическая пауза
IV. Формирование умений и навыков.
Работа в группах
1-я группа. Нахождение точки на числовой окружности с координатой, удовлетворяющей заданному уравнению.
№ 5.6 (а; б) – № 5.9 (а; б).
В процессе работы над этими упражнениями отрабатываем пошаговость выполнения: запись ядра точки, аналитической записи.
2-я группа. Нахождение точек на числовой окружности с координатой, удовлетворяющей заданному неравенству.
№ 5.11 (а; б) – 5.14 (а;б).
Главное умение, которое должны приобрести школьники при выполнении данных упражнений, – это составление ядра аналитической записи дуги.
V. Самостоятельная работа.
Вариант 1
1. Обозначьте на числовой окружности точку, которая соответствует заданному числу, и найдите её декартовы координаты:
2. Найдите на числовой окружности точки с данной абсциссой и запишите, каким числам t они соответствуют.
3. Обозначьте на числовой окружности точки с ординатой, удовлетворяющей неравенству и запишите при помощи двойного неравенства, каким числам t они соответствуют.
Вариант 2
1. Обозначьте на числовой окружности точку, которая соответствует данному числу, и найдите её декартовы координаты:
2. Найдите на числовой окружности точки с данной ординатой у = 0,5 и запишите, каким числам t они соответствуют.
3. Обозначьте на числовой окружности точки с абсциссой, удовлетворяющей неравенству и запишите при помощи двойного неравенства, каким числам t они соответствуют.
VI. Итоги урока.
Вопросы учащимся:
– Как найти на окружности точку, абсцисса которой удовлетворяет заданному уравнению?
– Как найти на окружности точку, ордината которой удовлетворяет заданному уравнению?
– Назовите алгоритм решения неравенств с помощью числовой окружности.
Домашнее задание: , стр. 36. № 5.6 (в; г) – № 5.9 (в; г),
№ 5.11 (в; г) – № 5.14 (в; г).
Урок №3
Цели: ввести понятие модели числовой окружности в декартовой и криволинейной системе координат.
Задачи: проверить степень усвоения ранее изученного материала,
актуализировать знания учащихся, необходимые при изучении новой темы.
Развивать вычислительные навыки, правильную математическую речь, логическое мышление учащихся.
Прививать самостоятельность, внимание и аккуратность. Воспитывать ответственное отношение к обучению.
Планируемые результаты:
Знать, понимать: — числовая окружность.
Уметь: — находить на окружности точки по заданным координатам; — находить координаты точки, расположенной на числовой окружности.
Уметь применять изученный теоретический материал при выполнении письменной работы.
Техническое обеспечение урока Компьютер, экран, проектор, учебник, задачник.
Дополнительное методическое и дидактическое обеспечение урока: Мордкович А. Г. М79 Алгебра и начала математического анализа. 10— 11 классы (базовый уровень) : методическое пособие для учителя / А. Г. Мордкович, П. В. Семенов. — М. : Мнемози- на, 2010. — 202 с. : ил
Ход урока
Организационный момент.
Приветствие учеников, поверка отсутствующих Психологический настрой учащихся.
Проверка домашнего задания № 5.6 (в; г) – № 5.9 (в; г), № 5.11 (в; г) – № 5.14 (в; г).
Разобрать решение заданий вызвавших затруднение.
II. Фронтальный опрос по теме:
Дайте определение числовой окружности
Сколько четвертей имеем в единичной окружности?
Как они называются?Определите знаки в каждой из четверти.
Проверочная работа
После выполнения заданий, учащиеся сдают листочки, а затем вместе с учителем проверяют правильные ответы.
2Постройте геометрическую модель дуги числовой окружности, все точки которой удовлетворяют неравенству .
3
Найдите множество чисел, которым соответствуют отмеченные на числовой окружности точки
Вариант №2
1
Найдите на числовой окружности точки, которые соответствуют данным числам: .
2
Постройте геометрическую модель дуги числовой окружности, все точки которой удовлетворяют неравенству .
3
Найдите множество чисел, которым соответствуют отмеченные на числовой окружности точки
Вариант №3
1
Найдите на числовой окружности точки, которые соответствуют данным числам: .
2
Постройте геометрическую модель дуги числовой окружности, все точки которой удовлетворяют неравенству .
3
Найдите множество чисел, которым соответствуют отмеченные на числовой окружности точки
Вариант №4
1
Найдите на числовой окружности точки, которые соответствуют данным числам: .
2
Постройте геометрическую модель дуги числовой окружности, все точки которой удовлетворяют неравенству .
3
Найдите множество чисел, которым соответствуют отмеченные на числовой окружности точки
Динамическая пауза
IV. Обобщение материала
1. Рассмотреть числовую окружность в декартовой системе координат.
2. Составить таблицу координат чисел числовой окружности для первого макета.
3. Составить таблицу координат чисел числовой окружности для второго макета.
У каждого из вас в тетради есть три макета числовой окружности. Каждая точка числовой окружности имеет в координатной плоскости свои координаты. Найдём сначала координаты тех точек координатной плоскости, которые получены на макетах числовой окружности.
На первом макете возьмем точку M(π/4) середина I четверти. Опустим перпендикуляр MP на прямую OA и рассмотрим треугольник OMP. Так как дуга AM составляет половину дуги AB, то ∡MOP=45°. Значит, треугольник OMP — равнобедренный прямоугольный треугольник и OP=MP, т.е. у точки M абсцисса и ордината равны: x=y. Так как координаты точки M(x;y) удовлетворяют уравнению числовой окружности x2+y2=1, то для их нахождения нужно решить систему уравнений:
Подставив x вместо y в первое уравнение системы, получим следующее решение:
При решении учитываем, что абсцисса точки M положительна.
Получили, что координаты точки M, соответствующей числу π/4 будут M(π/4)=M(2√2;2√2)
Аналогично можно получить координаты и других точек первого макета числовой окружности, учитывая только знаки координат в каждой четверти.
Полученные результаты запишем в таблицу:
Перейдем на второй макет. Рассуждаем аналогично для точки M, если теперь она соответствует числу π/6
Треугольник MOP прямоугольный. Так как дуга AM составляет третью часть дуги AB, то ∡MOP=30°.
Катет MP лежит против угла 30 градусов в прямоугольном треугольнике, значит, равен половине гипотенузы, т.е. ордината точки M равна
MP=1/2 y=1/2
Абсциссу x точки M найдём, решив уравнение:
При решении учитываем, что абсцисса точки M положительна.
Получили, что координаты точки M, соответствующей числу π/6 будут M(π/6)=M(3√2;1/2)
Аналогично можно получить координаты и других точек второго макета числовой окружности, учитывая только знаки координат в каждой четверти.
На третьем макете возьмем угол в 600 или π/3. Треугольник OKF прямоугольный. Так как дуга AK составляет третью часть дуги AB, то ∡KOF=60°, а ∡OKF=30°,
Катет OF лежит против угла 30 градусов в прямоугольном треугольнике, значит, равен половине гипотенузы, т.е. абсцисса точки F равна
OF=1/2 x=1/2
Ординату y точки K найдём, решив уравнение:
При решении учитываем, что ордината точки K положительна.
Получили, что координаты точки K, соответствующей числу π/3 будут K(π/3)=F(1/2, 3√2) . Полученные данные занесем в таблицу:
V. Подведение итогов урока, постановка домашнего задания, рефлексия.
Понятие числовой окружности вы изучали для того чтобы перейти к изучению таких важных с точки зрения математики и геометрии понятий как синус, косинус, тангенс и котангенс.
Вопросы учащимся:
Итак, что мы сегодня узнали на уроке нового?
Домашнее задание: , стр. 36. № 5.8, № 5.13 (в,г)
infourok.ru
10 класс. Алгебра. Тригонометрические функции. Числовая окружность. — Числовая окружность. Числовая окружность на координатной плоскости.
Комментарии преподавателя
Для любой функции независимый аргумент откладывается либо на числовой прямой, либо на окружности. Охарактеризуем и числовую прямую, и числовую окружность.
Прямая становится числовой (координатной) прямой, если отмечено начало координат, выбраны направление и масштаб (рис. 1).
Числовая прямая устанавливает взаимно-однозначное соответствие между всеми точками прямой и всеми действительными числами.
Например, берем число откладываем на координатной оси, получаем точку Возьмем число откладываем на оси, получаем точку (рис. 2).
И наоборот, если мы взяли любую точку на координатной прямой, то найдется единственное соответствующее ей действительное число (рис. 2).
К такому соответствию люди пришли не сразу. Чтобы понять это, вспомним основные числовые множества.
Сначала ввели множество натуральных чисел
Затем множество целых чисел
Множество рациональных чисел
Предполагалось, что этих множеств будет достаточно, и существует взаимно-однозначное соответствие между всеми рациональными числами и точками прямой. Но оказалось, что на числовой прямой есть бесчисленное множество точек, которые нельзя описать числами вида
Пример – гипотенуза прямоугольного треугольника с катетами 1 и 1. Она равна (рис. 3).
Найдется ли среди множества рациональных чисел число, в точности равное Нет, не найдется. Докажем этот факт.
Докажем методом от противного. Предположим, что существует дробь, равная т.е.
Тогда Возведем обе части в квадрат, Очевидно, что правая часть равенства делится на 2, . Значит и Тогда Но тогда и А значит, Тогда получается, что дробь сократимая. Это противоречит условию, значит
Число иррациональное. Множество рациональных и иррациональных чисел образуют множество действительных чисел Если мы возьмем любую точку на прямой, ей будет соответствовать какое-либо действительное число. И если мы возьмем любое действительное число, ему будет соответствовать единственная точка на координатной прямой.
Уточним, что такое числовая окружность и каковы взаимоотношения между множеством точек окружности и множеством действительных чисел.
Начало отсчета – точка A. Направление отсчета – против часовой стрелки – положительное, по часовой стрелке – отрицательное. Масштаб – длина окружности (рис. 4).
Вводя эти три положения, мы имеем числовую окружность. Укажем, каким образом каждому числу поставить в соответствие точку на окружности и наоборот.
Задав число получаем точку на окружности
(рис. 4).
Каждому действительному числу соответствует точка на окружности. А наоборот?
Точка соответствует числу
www.kursoteka.ru
Внеклассный урок — Числовая окружность
Числовая окружность
Числовая окружность – это единичная окружность, точки которой соответствуют определенным действительным числам.
Единичной окружностью называют окружность радиуса 1.
Общий вид числовой окружности.
1) Ее радиус принимается за единицу измерения.
2) Горизонтальный и вертикальный диаметры делят числовую окружность на четыре четверти (см.рисунок). Их соответственно называют первой, второй, третьей и четвертой четвертью.
3) Горизонтальный диаметр обозначают AC, причем А – это крайняя правая точка.
Вертикальный диаметр обозначают BD, причем B – это крайняя верхняя точка.
Соответственно:
первая четверть – это дуга AB
вторая четверть – дуга BC
третья четверть – дуга CD
четвертая четверть – дуга DA
4) Начальная точка числовой окружности – точка А.
Отсчет по числовой окружности может вестись как по часовой стрелке, так и против часовой стрелки.
Отсчет от точки А против часовой стрелки называется положительным направлением.
Отсчет от точки А по часовой стрелке называется отрицательным направлением.
Числовая окружность на координатной плоскости.
Центр радиуса числовой окружности соответствует началу координат (числу 0).
Горизонтальный диаметр соответствует оси x, вертикальный – оси y.
Начальная точка А числовой окружности находится на оси x и имеет координаты (1; 0).
Значения x и y в четвертях числовой окружности:
1-я четверть | 2-я четверть | 3-я четверть | 4-я четверть |
x > 0, y > 0 | x < 0, y > 0 | x < 0, y < 0 | x > 0, y < 0 |
Значение любой точки числовой окружности:
Любая точка числовой окружности с координатами (x; y) не может быть меньше -1, но не может быть больше 1: –1 ≤ x ≤ 1; –1 ≤ y ≤ 1 |
Основные величины числовой окружности:
| | |
|
|
|
|
|
|
| π |
|
Имена и местонахождение основных точек числовой окружности:
Как запомнить имена числовой окружности.
Есть несколько простых закономерностей, которые помогут вам легко запомнить основные имена числовой окружности.
Перед тем как начать, напомним: отсчет ведется в положительном направлении, то есть от точки А (2π) против часовой стрелки.
1) Начнем с крайних точек на осях координат.
Начальная точка – это 2π (крайняя правая точка на оси х, равная 1).
Как вы знаете, 2π – это длина окружности. Значит, половина окружности – это 1π или π. Ось х делит окружность как раз пополам. Соответственно, крайняя левая точка на оси х, равная -1, называется π.
Крайняя верхняя точка на оси у, равная 1, делит верхнюю полуокружность пополам. Значит, если полуокружность – это π, то половина полуокружности – это π/2.
Одновременно π/2 – это и четверть окружности. Отсчитаем три таких четверти от первой до третьей – и мы придем в крайнюю нижнюю точку на оси у, равной -1. Но если она включает три четверти – значит имя ей 3π/2.
2) Теперь перейдем к остальным точкам. Обратите внимание: все противоположные точки имеют одинаковый числитель – причем это противоположные точки и относительно оси у, и относительно центра осей, и относительно оси х. Это нам и поможет знать их значения точек без зубрежки.
Надо запомнить лишь значение точек первой четверти: π/6, π/4 и π/3. И тогда мы «увидим» некоторые закономерности:
— Относительно оси у в точках второй четверти, противоположных точкам первой четверти, числа в числителях на 1 меньше величины знаменателей. К примеру, возьмем точку π/6. Противоположная ей точка относительно оси у тоже в знаменателе имеет 6, а в числителе 5 (на 1 меньше). То есть имя этой точки: 5π/6. Точка, противоположная π/4, тоже имеет в знаменателе 4, а в числителе 3 (на 1 меньше, чем 4) – то есть это точка 3π/4.
Точка, противоположная π/3, тоже имеет в знаменателе 3, а в числителе на 1 меньше: 2π/3.
— Относительно центра осей координат все наоборот: числа в числителях противоположных точек (в третьей четверти) на 1 больше значения знаменателей. Возьмем опять точку π/6. Противоположная ей относительно центра точка тоже имеет в знаменателе 6, а в числителе число на 1 больше – то есть это 7π/6.
Точка, противоположная точке π/4, тоже имеет в знаменателе 4, а в числителе число на 1 больше: 5π/4.
Точка, противоположная точке π/3, тоже имеет в знаменателе 3, а в числителе число на 1 больше: 4π/3.
— Относительно оси х (четвертая четверть) дело посложнее. Здесь надо к величине знаменателя прибавить число, которое на 1 меньше – эта сумма и будет равна числовой части числителя противоположной точки. Начнем опять с π/6. Прибавим к величине знаменателя, равной 6, число, которое на 1 меньше этого числа – то есть 5. Получаем: 6 + 5 = 11. Значит, противоположная ей относительно оси х точка будет иметь в знаменателе 6, а в числителе 11 – то есть 11π/6.
Точка π/4. Прибавляем к величине знаменателя число на 1 меньше: 4 + 3 = 7. Значит, противоположная ей относительно оси х точка имеет в знаменателе 4, а в числителе 7 – то есть 7π/4.
Точка π/3. Знаменатель равен 3. Прибавляем к 3 на единицу меньшее число – то есть 2. Получаем 5. Значит, противоположная ей точка имеет в числителе 5 – и это точка 5π/3.
3) Еще одна закономерность для точек середин четвертей. Понятно, что их знаменатель равен 4. Обратим внимание на числители. Числитель середины первой четверти – это 1π (но 1 не принято писать). Числитель середины второй четверти – это 3π. Числитель середины третьей четверти – это 5π. Числитель середины четвертой четверти – это 7π. Получается, что в числителях середин четвертей – четыре первых нечетных числа в порядке их возрастания:
(1)π, 3π, 5π, 7π.
Это тоже очень просто. Поскольку середины всех четвертей имеют в знаменателе 4, то мы уже знаем их полные имена: π/4, 3π/4, 5π/4, 7π/4.
Особенности числовой окружности. Сравнение с числовой прямой.
Как вы знаете, на числовой прямой каждая точка соответствует единственному числу. К примеру, если точка А на прямой равна 3, то она уже не может равняться никакому другому числу.
На числовой окружности все иначе, поскольку это окружность. К примеру, чтобы из точки А окружности прийти к точке M, можно сделать это, как на прямой (только пройдя дугу), а можно и обогнуть целый круг, а потом уже прийти к точке M. Вывод:
Пусть точка M равна какому-то числу t. Как мы знаем, длина окружности равна 2π. Значит, точку окружности t мы можем записать двояко: t или t + 2π. Это равнозначные величины.
То есть t = t + 2π. Разница лишь в том, что в первом случае вы пришли к точке M сразу, не делая круга, а во втором случае вы совершили круг, но в итоге оказались в той же точке M. Таких кругов можно сделать и два, и три, и двести. Если обозначить количество кругов буквой k, то получим новое выражение:
t = t + 2πk.
Отсюда формула:
Если точка M числовой окружности равна числу t, то она равна и числу вида t + 2πk, где k – любое целое число: M(t) = M(t + 2πk), где k ∈ Z. Число k называется параметром. |
Уравнение числовой окружности
(второе уравнение – в разделе «Синус, косинус, тангенс, котангенс»):
raal100.narod.ru
Числовая окружность на координатной плоскости
.
Дата: Урок 1
тема: Числовая окружность на координатной прямой
Цели: ввести понятие модели числовой окружности в декартовой и криволинейной системе координат; формировать умение находить декартовы координаты точек числовой окружности и выполнять обратное действие: зная декартовы координаты точки, определять её числовое значение на числовой окружности.
Ход урока
I. Организационный момент.
II. Объяснение нового материала.
1. Разместив числовую окружность в декартовой системе координат, подробно разбираем свойства точек числовой окружности, находящихся в различных координатных четвертях.
Для точки М числовой окружности используют запись М(t), если речь идет о криволинейной координате точки М, или запись М (х; у), если речь идет о декартовых координатах точки.
2. Отыскание декартовых координат «хороших» точек числовой окружности. Речь идет о переходе от записи М(t) к М (х; у).
3. Отыскание знаков координат «плохих» точек числовой окружности. Если, например, М(2) = М (х; у), то х 0; у 0. ( школьники учатся определять знаки тригонометрических функций по четвертям числовой окружности.)
IV. Формирование умений и навыков.
1. № 5.1 (а; б), № 5.2 (а; б), № 5.3 (а; б).
Данная группа заданий направлена на формирование умения отыскивать декартовы координаты «хороших» точек на числовой окружности.
Решение:
№ 5.1 (а).
2. № 5.4 (а; б), № 5.5 (а; б).
Эта группа заданий направлена на формирование умений находить криволинейные координаты точки по её декартовым координатам.
Решение:
№ 5.5 (б).
3. № 5.10 (а; б).
Данное упражнение направлено на формирование умения находить декартовы координаты «плохих» точек.
V. Итоги урока.
Вопросы учащимся:
– Что собой представляет модель – числовая окружность на координатной плоскости?
– Как, зная криволинейные координаты точки на числовой окружности, найти её декартовы координаты и наоборот?
Домашнее задание: № 5.1 (в; г) – 5.5 (в; г), № 5.10 (в; г).
Дата: Урок 2
ТЕМА: Решение задач на модели «числовая окружность на координатной плоскости»
Цели: продолжить формирование умения переходить от криволинейных координат точки на числовой окружности к декартовым координатам; формировать умение отыскивать на числовой окружности точки, координаты которых удовлетворяют заданному уравнению или неравенству.
Ход урока
I. Организационный момент.
II. Устная работа.
1. Назовите криволинейные и декартовы координаты точек на числовой окружности.
2. Сопоставьте дугу на окружности и её аналитическую запись.
III. Объяснение нового материала.
1. На этом уроке учащиеся, по замыслу авторов учебника, отрабатывают две последние дидактические «игры», связанные с изучаемой моделью.
2. Отыскание на числовой окружности точек, координаты которых удовлетворяют заданному уравнению.
Рассматриваем примеры 2 и 3 со с. 41–42 учебника.
Важность этой «игры» очевидна: учащиеся готовятся к решению простейших тригонометрических уравнений вида Для понимания сути дела следует прежде всего научить школьников решать эти уравнения с помощью числовой окружности, не переходя к готовым формулам.
При рассмотрении примера на нахождение точки с абсциссой обращаем внимание учащихся на возможность объединения ддвух серий ответов в одну формулу:
3. Отыскание на числовой окружности точек, координаты которых удовлетворяют заданному неравенству.
Рассматриваем примеры 4–7 со с. 43–44 учебника. Решая подобные задачи, мы готовим учащихся к решению тригонометрических неравенств вида
После рассмотрения примеров учащиеся могут самостоятельно сформулировать алгоритм решения неравенств указанного типа:
1) от аналитической модели переходим к геометрической модели – дуга МР числовой окружности;
2) составляем ядро аналитической записи МР; для дуги получаем
3) составляем общую запись:
IV. Формирование умений и навыков.
1-я группа. Нахождение точки на числовой окружности с координатой, удовлетворяющей заданному уравнению.
№ 5.6 (а; б) – № 5.9 (а; б).
В процессе работы над этими упражнениями отрабатываем пошаговость выполнения: запись ядра точки, аналитической записи.
2-я группа. Нахождение точек на числовой окружности с координатой, удовлетворяющей заданному неравенству.
№ 5.11 (а; б) – 5.14 (а;б).
Главное умение, которое должны приобрести школьники при выполнении данных упражнений, – это составление ядра аналитической записи дуги.
V. Самостоятельная работа.
Вариант 1
1. Обозначьте на числовой окружности точку, которая соответствует заданному числу, и найдите её декартовы координаты:
2. Найдите на числовой окружности точки с данной абсциссой и запишите, каким числам t они соответствуют.
3. Обозначьте на числовой окружности точки с ординатой, удовлетворяющей неравенству и запишите при помощи двойного неравенства, каким числам t они соответствуют.
Вариант 2
1. Обозначьте на числовой окружности точку, которая соответствует данному числу, и найдите её декартовы координаты:
2. Найдите на числовой окружности точки с данной ординатой у = 0,5 и запишите, каким числам t они соответствуют.
3. Обозначьте на числовой окружности точки с абсциссой, удовлетворяющей неравенству и запишите при помощи двойного неравенства, каким числам t они соответствуют.
VI. Итоги урока.
Вопросы учащимся:
– Как найти на окружности точку, абсцисса которой удовлетворяет заданному уравнению?
– Как найти на окружности точку, ордината которой удовлетворяет заданному уравнению?
– Назовите алгоритм решения неравенств с помощью числовой окружности.
Домашнее задание: № 5.6 (в; г) – № 5.9 (в; г),
№ 5.11 (в; г) – № 5.14 (в; г).
multiurok.ru
Конспект урока по алгебре 10 класс на тему Числовая окружность на координатной прямой
МБОУ Калининская СОШ
Цимлянский район
Алгебра
и начала
математического
анализа 10 класс
Конспект урока
на тему
«Числовая окружность на координатной плоскости»
Подготовил учитель
Математики
Поцелуева Е.В.
Тема Числовая окружность на координатной плоскости
Что будем изучать:
1. Определение.
2. Важные координаты числовой окружности.
3. Как искать координату числовой окружности?
4. Таблица основных координат числовой окружности.
5. Примеры решения задач.
Определение числовой окружности на координатной плоскости
Расположим числовую окружность в координатной плоскости так, чтобы центр окружности совместился с началом координат, а её радиус принимаем за единичный отрезок. Начальная точка числовой окружности A совмещена с точкой (1;0).
Каждая точка числовой окружности имеет в координатной плоскости свои координаты х и у, причем:
1) при x>0x>0, у>0у>0 – в первой четверти;
2) при х<0х<0, у>0у>0 – во второй четверти;
3) при х<0х<0, у<0у<0 – в третьей четверти;
4) при х>0х>0, у<0у<0 – в четвертой четверти.
Для любой точки М(х;у)М(х;у) числовой окружности выполняются неравенства: −1Запомните уравнение числовой окружности: x2+y2=1×2+y2=1.
Нам важно научиться находить координаты точек числовой окружности, представленных на рисунке.
Найдем координату точки π4π4
Точка М(π4)М(π4) – середина первой четверти. Опустим из точки М перпендикуляр МР на прямую ОА и рассмотрим треугольник OMP.Так как дуга АМ составляет половину дуги АВ, то ∠MOP=45°∠MOP=45°.
Значит, треугольник OMP – равнобедренный прямоугольный треугольник и OP=MPOP=MP, т.е. у точки M абсцисса и ордината равны: x=yx=y.
Так как координаты точки M(х;y)M(х;y) удовлетворяют уравнению числовой окружности, то для их нахождения нужно решить систему уравнений:
{x2+y2=1,x=y.{x2+y2=1,x=y.
Решив данную систему, получаем: y=x=√22y=x=22.
Значит, координаты точки M, соответствующей числу π4π4, будут M(π4)=M(√22;√22)M(π4)=M(22;22).
Аналогичным образом рассчитываются координаты точек, представленных на предыдущем рисунке.
Координаты точек числовой окружности
Рассмотрим примеры
Пример 1.
Найти координату точки числовой окружности: Р(45π4)Р(45π4).
Решение:
Т.к. числам tt и t+2π∗kt+2π∗k, где k-целое число, соответствует одна и та же точка числовой окружности то:
45π4=(10+54)∗π=10π+5π4=5π4+2π∗545π4=(10+54)∗π=10π+5π4=5π4+2π∗5.
Значит, числу 45π445π4 соответствует та же точка числовой окружности, что и числу 5π45π4. Посмотрев значение точки 5π45π4 в таблице, получаем: P(45π4)=P(−√22;−√22)P(45π4)=P(−22;−22).
Пример 2.
Найти координату точки числовой окружности: Р(−37π3)Р(−37π3).
Решение:
Т.к. числам tt и t+2π∗kt+2π∗k, где k-целое число, соответствует одна и та же точка числовой окружности то:
−37π3=−(12+13)∗π=−12π–π3=−π3+2π∗(−6)−37π3=−(12+13)∗π=−12π–π3=−π3+2π∗(−6).
Значит, числу −37π3−37π3 соответствует та же точка числовой окружности, что и числу –π3–π3, а числу –π3π3 соответствует та же точка, что и 5π35π3. Посмотрев значение точки 5π35π3 в таблице, получаем:
P(−37π3)=P(12;−√32)P(−37π3)=P(12;−32).
Пример 3.
Найти на числовой окружности точки с ординатой у=12у=12 и записать, каким числам tt они соответствуют?
Решение:
Прямая у=12у=12 пересекает числовую окружность в точках М и Р. Точка М соответствует числу π6π6 (из данных таблицы). Значит, и любому числу вида: π6+2π∗kπ6+2π∗k. Точка Р соответствует числу 5π65π6, а значит, и любому числу вида 5π6+2π∗k5π6+2π∗k.
Получили, как часто говорят в таких случаях, две серии значений:
π6+2π∗kπ6+2π∗k и 5π6+2π∗k5π6+2π∗k.
Ответ : t=π6+2π∗kt=π6+2π∗k и t=5π6+2π∗kt=5π6+2π∗k.
Пример 4.
Найти на числовой окружности точки с абсциссой x≥−√22x≥−22 и записать, каким числам ttони соответствуют.
Решение:
Прямая x=−√22x=−22 пересекает числовую окружность в точках М и Р. Неравенству x≥−√22x≥−22соответствуют точки дуги РМ. Точка М соответствует числу 3π43π4 (из данных таблицы). Значит, и любому числу вида −3π4+2π∗k−3π4+2π∗k. Точка Р соответствует числу −3π4−3π4, а значит, и любому числу вида −3π4+2π∗k−3π4+2π∗k.
Тогда получим −3π4+2π∗k≤t≤3π4+2πk−3π4+2π∗k≤t≤3π4+2πk.
Ответ : −3π4+2π∗k≤t≤3π4+2πk−3π4+2π∗k≤t≤3π4+2πk.
Задачи для самостоятельного решения
Найти координату точки числовой окружности: Р(61π6)Р(61π6).
2) Найти координату точки числовой окружности: Р(−52π3)Р(−52π3).
3) Найти на числовой окружности точки с ординатой у=−12у=−12 и записать, каким числам ttони соответствуют.
4) Найти на числовой окружности точки с ординатой у≥−12у≥−12 и записать, каким числам ttони соответствуют.
5) Найти на числовой окружности точки с абсциссой x≥−√32x≥−32 и записать, каким числам tt
Домашние задание: красн. учебник § 5, №5.5
№ 5.7-5.8(в,г), №5.10, №5.12-5.13(в,г)
Раздаточный материал
infourok.ru