1 задание егэ база – Как решать задание 1 ЕГЭ по математике базового уровня – разбор заданий
Задание №1 ЕГЭ по математике базовый уровень
Элементарные математические вычисления
В задании №1 ЕГЭ по математике базового уровня необходимо провести элементарные вычисления — сложение, вычитание, деление и умножение дробей. Более того, данное задание аналогично первому заданию ОГЭ по математике, поэтому теория для успешного выполнения одинакова. Поэтому мы перейдем непосредственно к разбору типовых вариантов.
Разбор типовых вариантов заданий №1 ЕГЭ по математике базового уровня
Первый вариант задания
Найдите значение выражения:Алгоритм решения:
- Определить порядок действий.
- Выполнить действия в скобках.
- Преобразовать смешанное число в неправильную дробь.
- Привести дроби в скобках к наименьшему общему знаменателю.
- Произвести действия в числителе.
- Знаменатель оставить наименьший общий.
- Умножить числитель получившейся дроби на 9.
- Полученный результат сократить и преобразовать в десятичную дробь.
Решение в общем виде:
Пояснения к решению:
Первым всегда выполняется действие в скобках, в данном случае вычитание.
Преобразуем смешанное число
в неправильную дробь. Для этого умножим целую часть на знаменатель, и прибавим числитель
3 • 15 + 1 = 46
Запишем результат в числитель, знаменатель оставим без изменения.
Действие в скобках примет вид:
Ищем наименьший общий знаменатель для дробей 4/9 и 46/15. 15 не делится на 9, удвоим наибольший знаменатель. 30 не делится на 9. утроим наибольший знаменатель, 45 делится на 9. Следовательно, 45 делится одновременно и на 15, и на 9. То есть 45 – наименьший общий знаменатель дробей 4/9 и 46/15.
Приводим дроби к общему знаменателю – 45. Для этого по основному свойству дроби необходимо и числитель и знаменатель дроби умножить на одно и то же число, чтобы дробь не изменилась. Это число называется дополнительным множителем. Дополнительный множитель к первой дроби — 5 (9*5=45). Чтобы получить в знаменателе первой дроби 45 необходимо умножить на 5 и числитель и знаменатель.
Вторую дробь умножим на 3 (15 • 3=45)
Действие в скобках после преобразования будет выглядеть так:
Произведем вычитание дробей с одинаковыми знаменателями. Для этого в числителе запишем вычитание числителей, а знаменатель оставим без изменений.
Выполним действие за скобками, в данном случае умножение на целое число. Для этого умножим числитель дроби на 9, а знаменатель оставим без изменений. Числитель и знаменатель полученной дроби сократим на 9, то есть разделим и числитель и знаменатель дроби на 9. По основному свойству дроби дробь не изменится.
Минус в числителе выносится за дробную черту.
Полученную дробь преобразуем в десятичную, поделив в столбик.
Не забудьте о знаке «минус» в ответе.
Ответ: 23,6
Второй вариант задания
Найдите значение выражения:Алгоритм решения:
- Определить порядок действий.
- Выполнить действие в скобках.
- Привести дроби в скобках к наименьшему общему знаменателю.
- Выполнить вычитание числителей, знаменатель оставить без изменений.
- Выполнить деление. Для этого числитель первой дроби нужно умножить на знаменатель второй, результат записать в числитель; знаменатель первой дроби умножить на числитель второй, результат записать в знаменатель.
Решение в общем виде:
Пояснения к решению:
Первым ВСЕГДА выполняют действия в скобках, в данном случае вычитание.
Для того чтобы выполнить вычитание дробей с разными знаменателями, необходимо привести их к наименьшему общему знаменателю. Сделаем это путем подбора. Необходимо найти число, которое одновременно делится и на 4, и на 9. 9 на 4 не делится. Удвоим больший знаменатель: 18 не делится на 4. Утроим больший знаменатель: 27 не делится на 4. Увеличим больший знаменатель в 4 раза: 36 делится и на 9, и на 4 одновременно. Следовательно, 36 – наименьший общий знаменатель для дробей 1/4 и 2/9.
Примечание. Метод подбора удобен, если числа небольшие. В противном случае нужно искать НОК по алгоритму.
Найдем дополнительные множители для дробей 1/4 и 2/9. По основному свойству дроби, если и числитель, и знаменатель дроби умножить на одно и то же число, то дробь не изменится. Дробь 1/4 нужно умножить на 9(и числитель, и знаменатель), чтобы в знаменателе получился наименьший общий знаменатель 36. Дробь 2/9 нужно умножить на 4 (и числитель, и знаменатель), чтобы в знаменателе получился наименьший общий знаменатель 36.
В результате получим:
Действие в скобках примет вид:
Выполним вычитание дробей с одинаковыми знаменателями. Для этого вычтем из числителя первой дроби числитель второй, результат запишем в числитель. Знаменатель оставим прежним.
Выполним действие за скобками. Для этого числитель первой дроби нужно умножить на знаменатель второй, результат записать в числитель; знаменатель первой дроби умножить на числитель второй, результат записать в знаменатель.
Сократим (разделим и числитель и знаменатель) полученную дробь на 12.
Ответ: 21
Третий вариант задания
Найти значение выражения:Алгоритм решения:
- Определить порядок действий.
- Первым ВСЕГДА выполняют действия в скобках, в данном случае сложение.
- Перевести смешанное число в неправильную дробь.
- Привести полученные дроби к наименьшему общему знаменателю.
- Выполните сложение дробей с одинаковыми знаменателями. Для этого сложить числители, результат записать в числитель, знаменатель оставить без изменений.
- Выполнить деление.
- Перевести смешанное число в неправильную дробь. Для этого целую часть умножить на знаменатель и прибавить числитель, результат записать в числитель, а знаменатель оставить прежним.
- Числитель первой дроби умножить на знаменатель второй – записать в числитель. Знаменатель первой дроби умножить на числитель второй результат записать в знаменатель.
- Сократить получившуюся дробь.
- Привести результат к десятичному виду.
Решение в общем виде:
Пояснения к решению:
Первым ВСЕГДА выполняют действия в скобках, в данном случае сложение.
Нужно сложить смешанное число и правильную дробь. Для этого целую часть умножить на знаменатель и прибавить числитель, результат записать в числитель, а знаменатель оставить прежним. Переведем смешанное число в неправильную дробь:
Действие в скобках примет вид:
Для того, чтобы выполнить сложение дробей с разными знаменателями, необходимо привести их к наименьшему общему знаменателю. Сделаем это путем подбора. Необходимо найти число, которое одновременно делится и на 5, и на 7. 7 на 5 не делится. Удвоим больший знаменатель: 14 не делится на 5. Утроим больший знаменатель: 21 не делится на 5. Увеличим больший знаменатель в 4 раза: 28 не делится 5. Увеличим больший знаменатель в 5 раз: 35 делится одновременно и на 5, и на 7. Следовательно, 35 – наименьший общий знаменатель для дробей 9/5 и 3/7.
Примечание. Метод подбора удобен, если числа небольшие. В противном случае нужно искать НОК по алгоритму.
Найдем дополнительные множители для дробей 9/5 и 3/7. По основному свойству дроби, если и числитель, и знаменатель дроби умножить на одно и то же число, то дробь не изменится. Дробь 9/5 нужно умножить на 7(и числитель, и знаменатель), чтобы в знаменателе получился наименьший общий знаменатель 35. Дробь 3/7 нужно умножить на 5 (и числитель, и знаменатель), чтобы в знаменателе получился наименьший общий знаменатель 35.
В результате получим:
Действие в скобках примет вид:
Выполним сложение дробей с одинаковыми знаменателями. Для этого сложим числители, результат запишем в числитель. Знаменатель оставим прежним.
Выполним действие за скобками. Переведем смешанное число в неправильную дробь, для этого целую часть нужно умножить на знаменатель и прибавить числитель, результат записать в числитель, а знаменатель оставить прежним.
Выполнить деление дробей. Числитель первой дроби нужно умножить на знаменатель второй, результат записать в числитель; знаменатель первой дроби умножить на числитель второй, результат записать в знаменатель.
Сократим (разделим и числитель, и знаменатель на одно и то же число) полученную дробь на 39.
Переведем полученную дробь в десятинную.
Ответ: 8,75
Вариант первого задания 2017 года (1)
Найдите значение выражения:(6,7 − 3,2) ⋅ 2,4
В данном случае первым действием мы выполняем вычитание в скобках, а затем производим умножение:
6,7 − 3,2 = 3,5
3,5⋅ 2,4 = 8,4
Отдельно остановлюсь на последнем действии. Его можно вычислить умножением в столбик, либо посчитать устно, воспользовавшись следующими логическими операциями:
2,4 ⋅ 3 + 2,4 ⋅ 0,5 = 2 ⋅ 3 + 0,4 ⋅ 3 + 2,4/2 = 6 + 1,2 +1,2 = 8,4
Ответ: 8,4
Вариант первого задания 2017 года (2)
Найдите значение выражения:В данном случае необходимо выполнить сложение обыкновенных дробей. Общий знаменатель для дробей в скобках — 15 (если вы забыли как определять общий знаменатель, смотрите здесь). Первую дробь домножаем на 5, вторую на 3. Получаем:
(5 + 3)/15
После сложения:
8/15
Теперь выполняем умножение:
8•6/15 = 48/15
В таком варианте дробь в ответ записать мы не можем, выделяем сначала целую часть, это 3 (45/15=3), в остатке получим:
3/15
После сокращения на 3:
1/5
и перевода в десятичный вид:
1/5 = 20/100 = 2/10 = 0,2
Не забываем про целую часть и получаем ответ:
3,2
Ответ: 3,2
Вариант первого задания 2019 года (1)
Найдите значение выражения:- Если представить черту дроби в виде знака деления, то получим выражение: (2,7+5,8):6,8. Отсюда получаем приоритет действий: 1) сложение в скобках; 2) деление. Поэтому сначала выполняем действие в числителе.
- Избавляемся от десят. запятых в числителе и знаменателе. Для этого применяем основное свойство дроби и умножаем числитель и знаменатель на 10.
- Делим 85 на 68 в столбик.
Решение
Ответ: 1,25
Вариант первого задания 2019 года (2)
- Учитываем приоритетность операций. Здесь 1-м действием выполняется умножение, а затем вычитание.
- При умножении числа записываем друг под другом, выровняв их по последней цифре. В результирующем числе отделяем столько знаков после запятой, сколько имеется суммарно в обоих множителях. В данном случае нужно отделить 2 знака.
- При выполнении вычитания в столбик числа располагают так, чтобы десят.запятые располагались на друг под другом.
Решение
Ответ: 26,7
Вариант первого задания 2019 года (3)
- Умножаем 1/5 на 5,5. При этом 5,5 переходит в числитель дроби.
- Выполняем сокращение полученной дроби на 5. Получаем десят.дробь
- Находим конечную разность.
Решение
Ответ:0,1
Вариант первого задания 2019 года (4)
- Находим разность в скобках. Для этого находим НОК (25, 38) и приводим дроби к общему знаменателю.
- Делим результат в скобках на дробь 6/19. Для этого переходим к умножению дробей, перевернув 9/16 и получив 16/9. Далее сокращаем множители в числителе и знаменателе и находим результирующую дробь.
- Полученную дробь записываем в десят.виде.
Решение
spadilo.ru
Задание №2 ЕГЭ по математике базовый уровень
Операции со степенями
Во задании №2 ЕГЭ по математике необходимо продемонстрировать знания работы со степенными выражениями.
Теория к заданию №2
Правила обращения со степенями можно представить следующим образом:
Кроме этого, следует напомнить об операциях с дробями:
Теперь можно перейти к разбору типовых вариантов! 🙂
Разбор типовых вариантов заданий №2 ЕГЭ по математике базового уровня
Первый вариант задания
Найдите значение выражения
Алгоритм выполнения:
- Представить число с отрицательным показателем в виде правильной дроби.
- Выполнить первое умножение.
- Представить степени чисел в виде простых чисел, заменив степени их умножением.
- Выполнить умножение.
- Выполнить сложение.
Решение:
Чтобы представить отрицательную степень числа в виде обыкновенной дроби, необходимо 1 разделить на это число, но уже в положительной степени.
То есть: 10-1 = 1/101 = 1/10
Выполним первое умножение, то есть умножение целого числа на правильную дробь. Для этого числитель дроби умножим на целое число, а знаменатель оставим без изменения.
9 · 1/10 = (9 · 1)/10 = 9/10
Первая степень числа всегда есть само число.
101 = 10
Вторая степень числа – это число умноженное само на себя.
102 = 10 · 10 = 100
Вычислим значение выражения, учитывая, что
получим:
Ответ: 560,9
Второй вариант задания
Найдите значение выражения
Алгоритм выполнения:
- Представить первую степень числа в виде целого числа.
- Представить отрицательные степени чисел в виде правильных дробей.
- Выполнить умножение целых чисел.
- Выполнить умножение целых чисел на правильные дроби.
- Выполнить сложение.
Решение:
Первая степень числа всегда есть само число. (101 = 10)
Чтобы представить отрицательную степень числа в виде обыкновенной дроби, необходимо 1 разделить на это число, но уже в положительной степени.
То есть:
10-1 = 1/101 = 1/10
10-2 = 1/102 = 1/(10 · 10) = 1/100
Выполним умножение целых чисел.
3 · 101 = 3 · 10 = 30
Выполним умножение целых чисел на правильные дроби.
4 · 10-2 = 4 · 1/100 = (4 ·1)/100 = 4/100
2 · 10-1 = 2 · 1/10 = (2 · 1)/10 = 2/10
Вычислим значение выражения, учитывая, что
получим:
Ответ: 30,24
Третий вариант задания
Найдите значение выражения
Алгоритм выполнения:
- Представить степени чисел в виде умножения и вычислить значение степеней чисел.
- Выполнить умножение.
- Выполнить сложение.
Решение:
Представим степени чисел в виде умножения. Для того чтобы представить степень числа в виде умножения, нужно это число умножить само на себя столько раз сколько содержится в показателе степени.
24 = 2 · 2 · 2 · 2 = 16
23 = 2 · 2 · 2 = 8
Выполним умножение:
4 · 24 = 4 · 16 = 64
3 · 23 = 3 · 8 = 24
Вычислим значение выражения:
Ответ: 88
Четвертый вариант задания
Найдите значение выражения
Алгоритм выполнения:
- Представим степень числа таким образом, чтобы можно было вынести за скобку общий множитель.
- Вынести общий множитель за скобку.
- Выполнить действие в скобках.
- Представить степень числа в виде умножения и вычислить значение степени числа.
- Выполнить умножение.
Решение:
Представим степень числа таким образом, чтобы можно было вынести за скобку общий множитель.
44 = 4 · 43
Вынесем общий множитель за скобку
3 · 43 + 2 · 44 = 43 · (3 + 2 · 4)
Выполним действие в скобках.
(3 + 2 · 4) = (3 + 8) = 11
Представим степень числа в виде умножения. Для того чтобы представить степень числа в виде умножения, нужно это число умножить само на себя столько раз сколько содержится в показателе степени.
43 = 4 · 4 · 4 = 64
Вычислим значение выражения, учитывая, что
получим:
Ответ: 704
Пятый вариант задания
Найдите значение выражения
Алгоритм выполнения:
- Представим степень числа таким образом, чтобы можно было вынести за скобку общий множитель.
- Вынести общий множитель за скобку.
- Выполнить действие в скобках.
- Представить степень числа в виде умножения и вычислить значение степени числа.
- Выполнить умножение.
Решение:
Представим степень числа таким образом, чтобы можно было вынести за скобку общий множитель.
53 = 5 · 52
Вынесем общий множитель за скобку
2 · 53 + 3 · 52 = 52 · (2 · 5 + 3)
Выполним действие в скобках.
(2 · 5 + 3) = (10 + 3) = 13
Представим степень числа в виде умножения. Для того чтобы представить степень числа в виде умножения, нужно это число умножить само на себя столько раз сколько содержится в показателе степени.
52 = 5 · 5 = 25
Вычислим значение выражения, учитывая, что
, а
получим:
Выполняем умножение в столбик, имеем:
Ответ: 325
Вариант второго задания из ЕГЭ 2017 года (1)
Найдите значение выражения:
Решение:
В данном задании удобней привести значения к более привычному виду, а именно записать числа в числителе и знаменателе в стандартном виде:
После этого можно выполнить деление 24 на 6, в результате получим 4.
Десять в четвертой степени при делении на десять в третьей степени даст десять в первой, или просто десять, поэтому мы получим:
4 • 10 = 40
Ответ: 40
Вариант второго задания из ЕГЭ 2017 года (2)
Найдите значение выражения:
Решение:
В данном случае мы должны заметить, что число 6 в знаменателе раскладывается на множители 2 и 3 в степени 5:
После этого можно выполнить сокращения степеней у двойки: 6-5=1, у тройки: 8-5=3.
Теперь возводим 3 в куб и умножаем на 2, получая 54.
Ответ: 54
Вариант второго задания 2019 года (1)
Алгоритм выполнения
- Применяем к числителю св-во степеней (ах)у=аху. Получаем 3–6.
- Применяем к дроби св-во степеней ax/ay=ax–y.
- Возводим 3 в полученную степень.
Решение:
(3–3)2 /3–8 = 3–6 /3–8= 3–6–(–8)) = 3–6+8 = 32 = 9
Ответ: 9
Вариант второго задания 2019 года (2)
Алгоритм выполнения
- Используем для степени в числителе (149) св-во (аb)х=ax·bx. 14 разложим на произведение 2 и 7. Получим произведение степеней с основаниями 2 и 7.
- Преобразуем выражение в 2 дроби, каждая из которых будет содержать степени с одинаковыми основаниями.
- Применяем к дробям св-во степеней ax/ay=ax–y.
- Находим полученное произведение.
Решение:
149 / 27·78 = (2·7)9 / 27·78 = 29·79 / 27 78 = 29–7·79–8 = 22·71 = 4·7 = 28
Ответ: 28
Вариант второго задания 2019 года (3)
Алгоритм выполнения
- Выносим за скобки общий множитель 52=25.
- Выполняем в скобках умножение чисел 2 и 5. Получаем 10.
- Выполняем в скобках сложение 10 и 3. Получаем 13.
- Выполняем умножение общего множителя 25 и 13.
Решение:
2·53+3·52 = 52·(2·5+3) = 25·(10+3) = 25·13 = 325
Ответ: 325
Вариант второго задания 2019 года (4)
Алгоритм выполнения
- Возводим в квадрат (–1). Получим 1, поскольку происходит возведение в четную степень.
- Возводим (–1) в 5-ю степень. Получим –1, т.к. происходит возведение в нечетную степень.
- Выполняем действия умножения.
- Получаем разность двух чисел. Находим ее.
Решение:
6·(–1)2+4·(–1)5 = 6·1+4·(–1) = 6+(–4) = 6–4 = 2
Ответ: 2
Вариант второго задания 2019 года (5)
Алгоритм выполнения
- Преобразуем множители 103 и 102 в целые числа.
- Находим произведения путем переноса десят.запятой вправо на соответствующее число знаков.
- Находим результирующую сумму.
Решение:
9,4·103+2,2·102 = 9,4·1000+2,2·100 = 9400+220 = 9620
Ответ: 9620
Вариант второго задания 2019 года (6)
Алгоритм выполнения
- Преобразуем 102 в целое число и выполняем умножение в числителе путем переноса деся.запятой.
- Преобразуем 10–2 в десят.дробь и выполняем умножение в знаменателе путем переноса десят.запятой влево.
- Домножаем числитель и знаменатель на 100, чтобы избавиться от десят.запятой в знаменателе.
- Находим результат путем деления числителя дроби на ее знаменатель.
Решение:
1,6·102 / 4·10–2 = 1,6·100 / 4·0,01 = 160/ 0,04 = 160·100 / 0,04·100 = 16000 / 4 = 4000
Ответ: 40000
Вариант второго задания 2019 года (7)
Алгоритм выполнения
- Применяем к дроби св-ва степеней ax·ay=ax+y и ax/ay=ax–y.
- Возводим 3 в полученную степень.
Решение:
3–10·35 / 3–7 = 3–10+5 /3–7 = 3–5 / 3–7 = 3–5–(–7)) = 3–5+7 = 32 = 9
Ответ: 9
Вариант второго задания 2019 года (8)
Алгоритм выполнения
- Представляем выражение в знаменателе как степень с основанием 8. Далее применяем св-во степеней (ах)у=аху, получаем 812.
- Применяем к дроби св-во степеней ax/ay=ax–y.
Решение:
813 /646 =813 / (82)6 =813 /812 = 813–12 = 81 = 8
Ответ: 8
Вариант второго задания 2019 года (9)
Алгоритм выполнения
- Преобразуем степени в числителе дроби и в делителе (число 92) так, чтобы получились степени с основанием 3.
- Используем св-во степеней (ах)у=аху для преобразованных степеней.
- Используем св-во степеней ax/ay=ax–y.
- Возводим 3 в полученную степень.
Решение:
274 /36 : 92 =(33)4 / 36 : (32)2 = 312/36 : 34 = 312–6–4 = 32 = 9
Ответ: 9
Вариант второго задания 2019 года (10)
Алгоритм выполнения
- Возводим каждый из множителей в соответствующую степень. Получим соответственно: 0,01, 1000, 4.
- Перемножаем 0,01 и 1000 путем переноса десят.запятой вправо на 3 знака. Получим 10.
- Умножаем 10 на 4.
Решение:
(0,1)2·103·22 = 0,01·1000·4 = 10·4 = 40
Ответ: 40
spadilo.ru
Задание №5 ЕГЭ по математике базовый уровень
Значение выражений
В задании №5 ЕГЭ по математике базового уровня нам необходимо вычислить значение выражения, пользуясь различными правилами: формулами сокращенного умножения, знаниями тригонометрии, свойствами логарифмов и другими.
Теория к заданию №5
В данном задании, кроме операций со степенями, о которых мы говорили в прошлых заданиях, необходимо помнить формулы сокращенного умножения:
Кроме этого, очень часто встречаются задания на знания свойств логарифма:
Полезными будут представления о тригонометрической окружности, по которой можно определять знаки тригонометрических функций:
Разбор типовых вариантов заданий №5 ЕГЭ по математике базового уровня
Вариант пятого задания(1)
Найдите значение выражения
Алгоритм выполнения
- Представим угол 390° с учетом периодичности функции tg меньшим углом.
- Найдем таблице значений тригонометрических функций (в справочных материалах) значение tg полученного угла.
- Выполним умножение.
Решение:
Функция tg является периодической с периодом 180°, то есть каждый раз при увеличении или уменьшении угла на 180° значение tg повторяется.
То есть tg α = tg (α + 180°) = tg (α — 180°)
tg 390° = tg (390° — 180°) = tg 210° = tg (210° — 180°) = tg 30°
Найдем таблице значений тригонометрических функций (в справочных материалах) значение tg полученного угла.
tg 30° = √3/3
Подставим найденное значение в данное выражение.
20 · √3 · (√3/3) = (20 · √3 · √3)/3 = (20 · 3)/3 = 20
Решение в общем виде
Вычислим выражение, учитывая, что функция тангенс периодическая с периодом π радиан или 180°. Следовательно, угол 390° эквивалентен углу
и получаем выражение:
Ответ: 20.
Вариант пятого задания(2)
Найдите значение выражения
Алгоритм выполнения
- Представим угол 420° с учетом периодичности функции tg меньшим углом.
- Найдем таблице значений тригонометрических функций (в справочных материалах) значение tg полученного угла.
- Выполним умножение.
Решение №1:
Функция tg является периодической с периодом 180°, то есть каждый раз при увеличении или уменьшении угла на 180° значение tg повторяется.
То есть
tg α = tg (α + 180°) = tg (α — 180°)
tg 390° = tg (420° — 180°) = tg 240° tg (240° — 180°) = tg 60°
Найдем таблице значений тригонометрических функций (в справочных материалах) значение tg полученного угла.
tg 60° = √3
Подставим найденное значение в данное выражение.
-50 · √3 · √3 = -50 · 3 = -150
Решение №2:
Заметим, что функция тангенс периодическая с периодом π радиан или 180°. Поэтому, тангенс угла 420° эквивалентен тангенсу угла в
,
получаем:
Ответ: -150.
Вариант пятого задания(3)
Найдите значение выражения
Алгоритм выполнения
- Объединим подкоренные выражения под один корень.
- Внесем под корень дробь.
- Сократим дробь под корнем.
- Представим произведение под корнем в виде произведения вторых степеней.
- Вынесем из под корня множители.
- Выполним умножение.
Решение:
Объединим подкоренные выражения под один корень. Имеем право так сделать использовав, свойство квадратного корня.
5/3 · √27 · √3 = 5/3 · √(27 · 3)
Внесем под корень дробь.
Корень квадратный, следовательно, чтобы внести дробь под знак корня нужно возвести ее в квадрат. То есть умножить сам на себя числитель и знаменатель.
(5/3)2 = (5 · 5)/(3 · 3)
Сократим дробь под корнем на три дважды.
Представим произведение под корнем в виде произведения вторых степеней.
Вынесем из под корня множители и выполним умножение.
Решение в общем виде:
Ответ: 15.
Вариант пятого задания (демонстрационный вариант 2018)
Найдите cos α, если sin α = 0,8 и 90° ‹ α ‹ 180°.
Алгоритм выполнения
- Запишем основное тригонометрическое тождество.
- Подставим в основное тригонометрическое тождество все известные данные.
- Решим полученное уравнение относительно cos α.
- Выбрать корни, подходящие к условию задания.
Решение:
Запишем основное тригонометрическое тождество.
sin2 α + cos2 α = 1
Подставим в основное тригонометрическое тождество все известные данные.
0,82 + cos2 α = 1
Решим полученное уравнение относительно cos α.
cos2 α – неизвестное слагаемое. Чтобы найти неизвестное слагаемое нужно из суммы вычесть известное слагаемое.
cos2 α = 1 — 0,82
Чтобы найти вторую степень числа нужно число умножить само на себя.
0,82 = 0,8 · 0,8 = 0,64
cos2 α = 1 — 0,82 1 — 0,64 = 0,36
cos α = √0,36
cos α = 0,6 или -0,6
Условие 90° ‹ α ‹ 180° означает, что -1 ‹ соs α ‹ 0.
Следовательно данному условию удовлетворяет только один корень -0,6.
Ответ: -0,6.
Вариант пятого задания 2017 года (1)
Найдите значение выражения (2√13 −1)(2√13 +1).
Алгоритм выполнения
В данном задании необходимо сразу заметить формулу сокращенного умножения — разность квадратов (последняя формула сокращенного умножения в теории выше).
Решение:
После этого, решение задания сводится к следующему:
(2√13 −1)(2√13 +1) = (2√13)2 — 12 = 4 • 13 — 1 = 51
Ответ: 51.
Вариант пятого задания 2017 года (2)
Найдите значение выражения 5log56+1 .
Алгоритм выполнения
Сначала вспомним свойства степеней и разложим выражение следующим образом:
5log56 • 51
Затем вспомним определение и свойство логарифма — это вторая строчка из нашей теории:
Решение:
Получим:
6•5 = 30
Ответ: 30
Вариант пятого задания 2019 года(1)
Найдите значение выражения
Алгоритм выполнения
- Применяем ф-лу сокращенного умножения a2–b2=(a-b)(a+b).
- Используем определение кв.корня: (√a)2=a.
- Находим полученную разность целых чисел.
Решение:
Ответ: 8
Вариант пятого задания 2019 года(2)
Найдите значение выражения
Алгоритм выполнения
- Применяем тождество loga(xy)=logax+logay.
- Преобразовываем множители, стоящие под знаком логарифма, в степени.
- Используем для выражения под знаком логарифма св-во степеней axbx=(ab)x.
- Используем св-во логарифмов xlogab=logabx.
- Применяем тождество logaa=1,.
Решение:
log627 + log68 = log627·8 = log633·23 = log6(3·2)3 = log663 = 3log66 = 3
Ответ:3
Вариант пятого задания 2019 года(3)
Найдите значение выражения
Алгоритм выполнения
- Вносим множитель √6 в скобки.
- Выполняем умножение √24 и √6. Получим √144. Это число является полным квадратом: (√12)2.
- Перемножаем √6 и √6. Получаем (√6)2.
- Используя определение кв.корня (√а)2=а, находим, что (√12)2=12, а (√6)2=6.
- Находим разность полученных целых чисел.
Решение:
Ответ: 6
Вариант пятого задания 2019 года(4)
Найдите sinα, если
Алгоритм выполнения
- Применим осн.тригонометрическое тождество. В тождество подставим данное в условии числовое значение для косинуса.
- Выполняем преобразование тождества, получаем числовой результат.
- Определяем знак результата, исходя из величины угла α.
Решение:
Ответ: 0,4
Вариант пятого задания 2019 года(5)
Найдите значение выражения
Алгоритм выполнения
- Выполняем 1-ю по приоритетности операцию – возведение в степень (в знаменателе). Для этого используем св-во степеней (ab)2=a2·b2. Далее для множителя (√13)2 применяем формулу, определяющую понятие кв.корня: (√а)2=а.
- Выполняем умножение в знаменателе.
- Представляем число 39 в числителе как произведение 3·13.
- Сокращаем дробь на 13.
- Переводим полученную обыкновенную дробь в десятичную.
Решение:
Ответ: 0,75
Вариант пятого задания 2019 года(6)
Найдите значение выражения
Алгоритм выполнения
- Применяем к показателю степени 2log37 св-во логарифмов logbyax=(x/y)logba. Получим log372.
- Применяем св-во логарифмов alogab=b. В результате знак логарифма исчезает, остается только выражение 72, которое было под знаком логарифма.
- Возводим 7 в квадрат.
Решение:
2log37 log372
3 = 3 = 72 = 49
Ответ:49
Вариант пятого задания 2019 года(7)
Найдите значение выражения
Алгоритм выполнения
- Используем св-во корней √(a·b)=√a·√b. Таким способом √63 разложим на множители √9 и √7.
- Сгруппируем одинаковые множители √7. Получим (√7)2.
- Основываясь на определении кв.корня (√а)2=а, представляем √9=(√3)2.
- Возводим полученные числа в квадрат.
- Находим итоговое произведение.
Решение:
Ответ: 21
Вариант пятого задания 2019 года(8)
Найдите значение выражения
Алгоритм выполнения
- Используем св-во степеней xa+b=xa·xb. Получим 2 множителя, первый из которых равен 7, а второй представляет собой степень с основанием 7 и показателем, содержащим логарифм.
- Для второго множителя применим св-во логарифмов alogab=b.
- Находим результирующее произведение.
Решение:
Ответ: 21
Вариант пятого задания 2019 года(9)
Найдите значение выражения
Алгоритм выполнения
- Для cos 3900 используем ф-лу приведения cos (3600+α)=cos α. Получим cos 300=√3/2. Записываем получившееся выражение в виде дроби со знаменателем 2.
- Вычисляем произведение √3·√3 путем возведения в степень. Для этого используем определение кв.корня: (√а)2=а.
- Сокращаем 20 в числителе и 2 в знаменателе на 2.
- Находим конечное произведение.
Решение:
Ответ: 30
Вариант пятого задания 2019 года(10)
Найдите значение выражения
Алгоритм выполнения
- Преобразовываем часть выражения, взятую в скобки. Для этого представляем 49 как 72. Затем используем св-во логарифмов logbax=xlogba, а далее св-во logaa=1. Получаем 2.
- Применяем св-во логарифмов logaa=1.
Решение:
log2(log749) = log2(log772) = log2(2log77) = log22 = 1
Ответ:1
spadilo.ru