Таблица перевода системы счисления – Таблица перевода двоичных, восьмеричных, десятичных (от 1 до 255) и шестнадцатеричных чисел. Binary, Octal and Hexadecimal Numbers vs Decimal Numbers
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
0 1 2 3 4 5 6 7 8 9 A B C D E F |
000 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017 |
00000000 00000001 00000010 00000011 00000100 00000101 00000110 00000111 00001000 00001001 00001010 00001011 00001100 00001110 00001111 |
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F |
020 021 022 023 024 025 026 027 030 031 032 033 034 035 036 037 |
00010000 00010001 00010010 00010011 00010100 00010101 00010110 00010111 00011000 00011001 00011010 00011011 00011100 00011101 00011110 00011111 |
Десятичное Dec |
Шестнадцатеричное Hex |
Восьмеричное Oct |
Двоичное Bin |
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F |
040 041 042 043 044 045 046 047 050 052 053 054 055 056 057 |
00100000 00100001 00100010 00100011 00100100 00100101 00100110 00100111 00101000 00101001 00101010 00101011 00101100 00101101 00101110 00101111 |
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F |
060 061 062 063 064 065 066 067 070 071 072 073 074 075 076 077 |
00110000 00110001 00110010 00110011 00110100 00110101 00110110 00110111 00111000 00111001 00111010 00111011 00111100 00111101 00111110 00111111 |
Десятичное Dec |
Шестнадцатеричное Hex |
Восьмеричное Oct |
Двоичное Bin |
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
41 42 |
dpva.ru
Переводы из различных систем счисления. Таблица соответствия систем.
Перевод из десятичной в двоичную систему счисления.
[youtube fLv4gs9EnJs nolink]
Перевод из двоичной в десятичную систему счисления и наоборот.
[youtube C0ai9-3GHJY nolink]
Перевод чисел из двоичной системы счисления в восьмеричную и наоборот.
[youtube x1bx7o2uESg nolink]
Перевод чисел из двоичной системы счисления в шестнадцатеричную. Сложение двоичных чисел.
[youtube rToqA6rEUQ8 nolink]
Перевод чисел в десятичную систему счисления. Полиномы.
[youtube eSviqB6Db7A nolink]
Краткая таблица соответствия — двоичная система в восьмеричную (8СС) и шестнадцатеричная (16СС) системы:
Таблица соответствия десятеричного от 1 до 255 (Decimal), двоичного (Binary) и шестнадцатеричного (Hexadecimal) представлений чисел.
Dec — десятеричная система;
Hex — шестнадцатеричная система;
Bin — двоичная система.
Dec | Hex | Bin | Dec | Hex | Bin | Dec | Hex | Bin | Dec | Hex | Bin |
0 | 0 | 0 | 64 | 40 | 1000000 | 128 | 80 | 10000000 | 192 | c0 | 11000000 |
1 | 1 | 1 | 65 | 41 | 1000001 | 129 | 81 | 10000001 | 193 | c1 | 11000001 |
2 | 2 | 10 | 66 | 42 | 1000010 | 130 | 82 | 10000010 | 194 | c2 | 11000010 |
3 | 3 | 11 | 67 | 43 | 1000011 | 131 | 83 | 10000011 | 195 | c3 | 11000011 |
4 | 4 | 100 | 68 | 44 | 1000100 | 132 | 84 | 10000100 | 196 | c4 | 11000100 |
5 | 5 | 101 | 69 | 45 | 1000101 | 133 | 10000101 | 197 | c5 | 11000101 | |
6 | 6 | 110 | 70 | 46 | 1000110 | 134 | 86 | 10000110 | 198 | c6 | 11000110 |
7 | 7 | 111 | 71 | 47 | 1000111 | 135 | 87 | 10000111 | 199 | c7 | 11000111 |
8 | 8 | 1000 | 72 | 48 | 1001000 | 136 | 88 | 10001000 | 200 | c8 | 11001000 |
9 | 9 | 1001 | 73 | 49 | 1001001 | 137 | 89 | 10001001 | 201 | c9 | 11001001 |
10 | a | 1010 | 4a | 1001010 | 138 | 8a | 10001010 | 202 | ca | 11001010 | |
11 | b | 1011 | 75 | 4b | 1001011 | 139 | 8b | 10001011 | 203 | cb | 11001011 |
12 | c | 1100 | 76 | 4c | 1001100 | 140 | 8c | 10001100 | 204 | cc | 11001100 |
13 | d | 1101 | 77 | 4d | 1001101 | 141 | 8d | 10001101 | 205 | cd | 11001101 |
14 | e | 1110 | 78 | 4e | 1001110 | 142 | 8e | 10001110 | 206 | ce | 11001110 |
15 | f | 1111 | 79 | 4f | 1001111 | 143 | 8f | 10001111 | 207 | cf | 11001111 |
16 | 10 | 10000 | 80 | 50 | 1010000 | 144 | 90 | 10010000 | 208 | d0 | 11010000 |
17 | 11 | 10001 | 81 | 51 | 1010001 | 145 | 91 | 10010001 | 209 | d1 | 11010001 |
18 | 12 | 10010 | 82 | 52 | 1010010 | 146 | 92 | 10010010 | 210 | d2 | 11010010 |
19 | 13 | 10011 | 83 | 53 | 1010011 | 147 | 93 | 10010011 | 211 | d3 | 11010011 |
20 | 14 | 10100 | 84 | 54 | 1010100 | 148 | 94 | 10010100 | 212 | d4 | 11010100 |
21 | 15 | 10101 | 85 | 55 | 1010101 | 149 | 95 | 10010101 | 213 | d5 | 11010101 |
22 | 16 | 10110 | 86 | 56 | 1010110 | 150 | 96 | 10010110 | 214 | d6 | 11010110 |
23 | 17 | 10111 | 87 | 57 | 1010111 | 151 | 97 | 10010111 | 215 | d7 | 11010111 |
24 | 18 | 11000 | 88 | 58 | 1011000 | 152 | 98 | 10011000 | 216 | d8 | 11011000 |
25 | 19 | 11001 | 89 | 59 | 1011001 | 153 | 99 | 10011001 | 217 | d9 | 11011001 |
26 | 1a | 11010 | 90 | 5a | 1011010 | 154 | 9a | 10011010 | 218 | da | 11011010 |
27 | 1b | 11011 | 91 | 5b | 1011011 | 155 | 9b | 10011011 | 219 | db | 11011011 |
28 | 1c | 11100 | 92 | 5c | 1011100 | 156 | 9c | 10011100 | 220 | dc | 11011100 |
29 | 1d | 11101 | 93 | 5d | 1011101 | 157 | 9d | 10011101 | 221 | dd | 11011101 |
30 | 1e | 11110 | 94 | 5e | 1011110 | 158 | 9e | 10011110 | 222 | de | 11011110 |
31 | 1f | 11111 | 95 | 5f | 1011111 | 159 | 9f | 10011111 | 223 | df | 11011111 |
32 | 20 | 100000 | 96 | 60 | 1100000 | 160 | a0 | 10100000 | 224 | e0 | 11100000 |
33 | 21 | 100001 | 97 | 61 | 1100001 | 161 | a1 | 10100001 | 225 | e1 | 11100001 |
34 | 22 | 100010 | 98 | 62 | 1100010 | 162 | a2 | 10100010 | 226 | e2 | 11100010 |
35 | 23 | 100011 | 99 | 63 | 1100011 | 163 | a3 | 10100011 | 227 | e3 | 11100011 |
36 | 24 | 100100 | 100 | 64 | 1100100 | 164 | a4 | 10100100 | 228 | e4 | 11100100 |
37 | 25 | 100101 | 101 | 65 | 1100101 | 165 | a5 | 10100101 | 229 | e5 | 11100101 |
38 | 26 | 100110 | 102 | 66 | 1100110 | 166 | a6 | 10100110 | 230 | e6 | 11100110 |
39 | 27 | 100111 | 103 | 67 | 1100111 | 167 | a7 | 10100111 | 231 | e7 | 11100111 |
40 | 28 | 101000 | 104 | 68 | 1101000 | 168 | a8 | 10101000 | 232 | e8 | 11101000 |
41 | 29 | 101001 | 105 | 69 | 1101001 | 169 | a9 | 10101001 | 233 | e9 | 11101001 |
42 | 2a | 101010 | 106 | 6a | 1101010 | 170 | aa | 10101010 | 234 | ea | 11101010 |
43 | 2b | 101011 | 107 | 6b | 1101011 | 171 | ab | 10101011 | 235 | eb | 11101011 |
44 | 2c | 101100 | 108 | 6c | 1101100 | 172 | ac | 10101100 | 236 | ec | 11101100 |
45 | 2d | 101101 | 109 | 6d | 1101101 | 173 | ad | 10101101 | 237 | ed | 11101101 |
46 | 2e | 101110 | 110 | 6e | 1101110 | 174 | ae | 10101110 | 238 | ee | 11101110 |
47 | 2f | 101111 | 111 | 6f | 1101111 | 175 | af | 10101111 | 239 | ef | 11101111 |
48 | 30 | 110000 | 112 | 70 | 1110000 | 176 | b0 | 10110000 | 240 | f0 | 11110000 |
49 | 31 | 110001 | 113 | 71 | 1110001 | 177 | b1 | 10110001 | 241 | f1 | 11110001 |
50 | 32 | 110010 | 114 | 72 | 1110010 | 178 | b2 | 10110010 | 242 | f2 | 11110010 |
51 | 33 | 110011 | 115 | 73 | 1110011 | 179 | b3 | 10110011 | 243 | f3 | 11110011 |
52 | 34 | 110100 | 116 | 74 | 1110100 | 180 | b4 | 10110100 | 244 | f4 | 11110100 |
53 | 35 | 110101 | 117 | 75 | 1110101 | 181 | b5 | 10110101 | 245 | f5 | 11110101 |
54 | 36 | 110110 | 118 | 76 | 1110110 | 182 | b6 | 10110110 | 246 | f6 | 11110110 |
55 | 37 | 110111 | 119 | 77 | 1110111 | 183 | b7 | 10110111 | 247 | f7 | 11110111 |
56 | 38 | 111000 | 120 | 78 | 1111000 | 184 | b8 | 10111000 | 248 | f8 | 11111000 |
57 | 39 | 111001 | 121 | 79 | 1111001 | 185 | b9 | 10111001 | 249 | f9 | 11111001 |
58 | 3a | 111010 | 122 | 7a | 1111010 | 186 | ba | 10111010 | 250 | fa | 11111010 |
59 | 3b | 111011 | 123 | 7b | 1111011 | 187 | bb | 10111011 | 251 | fb | 11111011 |
60 | 3c | 111100 | 124 | 7c | 1111100 | 188 | bc | 10111100 | 252 | fc | 11111100 |
61 | 3d | 111101 | 125 | 7d | 1111101 | 189 | bd | 10111101 | 253 | fd | 11111101 |
62 | 3e | 111110 | 126 | 7e | 1111110 | 190 | be | 10111110 | 254 | fe | 11111110 |
63 | 3f | 111111 | 127 | 7f | 1111111 | 191 | bf | 10111111 | 255 | ff | 11111111 |
И, напоследок — удобный online-калькулятор систем счисления тут>>>.
Раздел: HOWTO’s Разное
rtfm.co.ua
Перевод чисел из одной системы счисления в другую онлайн
С помощю этого онлайн калькулятора можно перевести целые и дробные числа из одной системы счисления в другую. Дается подробное решение с пояснениями. Для перевода введите исходное число, задайте основание сисемы счисления исходного числа, задайте основание системы счисления, в которую нужно перевести число и нажмите на кнопку «Перевести». Теоретическую часть и численные примеры смотрите ниже.
Результат уже получен!Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения
Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:
число | 6 | 3 | 7 | 2 |
позиция | 3 | 2 | 1 | 0 |
Тогда число 6372 можно представить в следующем виде:
6372=6000+300+70+2 =6·103+3·102+7·101+2·100.
Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.
Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:
число | 1 | 2 | 8 | 7 | . | 9 | 2 | 3 |
позиция | 3 | 2 | 1 | 0 | -1 | -2 | -3 |
Тогда число 1287.923 можно представить в виде:
1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·103 +2·102 +8·101+7·100+9·10-1+2·10-2+3·10-3.
В общем случае формулу можно представить в следующем виде:
Цn·sn+Цn-1·sn-1+…+Ц1·s1+Ц0·s0+Д-1·s-1+Д-2·s-2+…+Д-k·s-k
(1)
где Цn-целое число в позиции n, Д-k— дробное число в позиции (-k), s — система счисления.
Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления — из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления — из множества цифр {0,1}, в шестнадцатеричной системе счисления — из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.
В таблице Таб.1 представлены числа в разных системах счисления.
Таблица 1 | |||
---|---|---|---|
Система счисления | |||
10 | 2 | 8 | 16 |
0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
2 | 10 | 2 | 2 |
3 | 11 | 3 | 3 |
4 | 100 | 4 | 4 |
5 | 101 | 5 | 5 |
6 | 110 | 6 | 6 |
7 | 111 | 7 | 7 |
8 | 1000 | 10 | 8 |
9 | 1001 | 11 | 9 |
10 | 1010 | 12 | A |
11 | 1011 | 13 | B |
12 | 1100 | 14 | C |
13 | 1101 | 15 | D |
14 | 1110 | 16 | E |
15 | 1111 | 17 | F |
Перевод чисел из одной системы счисления в другую
Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.
Перевод чисел из любой системы счисления в десятичную систему счисления
С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.
Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:
1·26+0·25+1·24+1·23+1·22 +0·21+1·20+0·2-1+0·2-2+1·2-3 =64+16+8+4+1+1/8=93.125
Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:
Пример 3. Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:
Здесь A -заменен на 10, B — на 11, C— на 12, F — на 15.
Перевод чисел из десятичной системы счисления в другую систему счисления
Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.
Целую часть числа переводится из десятичной СС в другую систему счисления — последовательным делением целой части числа на основание системы счисления (для двоичной СС — на 2, для 8-ичной СС — на 8, для 16-ичной — на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.
Пример 4. Переведем число 159 из десятичной СС в двоичную СС:
159 | 2 | ||||||
158 | 79 | 2 | |||||
1 | 78 | 39 | 2 | ||||
1 | 38 | 19 | 2 | ||||
1 | 18 | 9 | 2 | ||||
1 | 8 | 4 | 2 | ||||
1 | 4 | 2 | 2 | ||||
0 | 2 | 1 | |||||
0 |
Рис. 1
Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111. Следовательно можно записать:
15910=100111112.
Пример 5. Переведем число 615 из десятичной СС в восьмеричную СС.
615 | 8 | ||
608 | 76 | 8 | |
7 | 72 | 9 | 8 |
4 | 8 | 1 | |
1 |
Рис. 2
При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147(см. Рис. 2). Следовательно можно записать:
61510=11478.
Пример 6. Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.
19673 | 16 | ||
19664 | 1229 | 16 | |
9 | 1216 | 76 | 16 |
13 | 64 | 4 | |
12 |
Рис. 3
Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 — D. Следовательно наше шестнадцатеричное число — это 4CD9.
Далее рассмотрим перевод правильных десятичных дробей в двоичную СС, в восьмеричную СС, в шестнадцатеричную СС и т.д.
Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).
Рассмотрим вышеизложенное на примерах.
Пример 7. Переведем число 0.214 из десятичной системы счисления в двоичную СС.
0.214 | ||
x | 2 | |
0 | 0.428 | |
x | 2 | |
0 | 0.856 | |
x | 2 | |
1 | 0.712 | |
x | 2 | |
1 | 0.424 | |
x | 2 | |
0 | 0.848 | |
x | 2 | |
1 | 0.696 | |
x | 2 | |
1 | 0.392 |
Рис. 4
Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011.
Следовательно можно записать:
0.21410=0.00110112.
Пример 8. Переведем число 0.125 из десятичной системы счисления в двоичную СС.
0.125 | ||
x | 2 | |
0 | 0.25 | |
x | 2 | |
0 | 0.5 | |
x | 2 | |
1 | 0.0 |
Рис. 5
Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:
0.12510=0.0012.
Пример 9. Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.
0.214 | ||
x | 16 | |
3 | 0.424 | |
x | 16 | |
6 | 0.784 | |
x | 16 | |
12 | 0.544 | |
x | 16 | |
8 | 0.704 | |
x | 16 | |
11 | 0.264 | |
x | 16 | |
4 | 0.224 |
Рис. 6
Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:
0.21410=0.36C8B416.
Пример 10. Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.
0.512 | ||
x | 8 | |
4 | 0.096 | |
x | 8 | |
0 | 0.768 | |
x | 8 | |
6 | 0.144 | |
x | 8 | |
1 | 0.152 | |
x | 8 | |
1 | 0.216 | |
x | 8 | |
1 | 0.728 |
Рис. 7
Получили:
0.51210=0.4061118.
Пример 11. Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:
159.12510=10011111.0012.
Пример 12. Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим:
19673.21410=4CD9.36C8B416.
matworld.ru
Перевод чисел в различные системы счисления с решением | Онлайн калькулятор
Калькулятор позволяет переводить целые и дробные числа из одной системы счисления в другую. Основание системы счисления не может быть меньше 2 и больше 36 (10 цифр и 26 латинских букв всё-таки). Длина чисел не должна превышать 30 символов. Для ввода дробных чисел используйте символ .
или ,
. Чтобы перевести число из одной системы в другую, введите исходное число в первое поле, основание исходной системы счисления во второе и основание системы счисления, в которую нужно перевести число, в третье поле, после чего нажмите кнопку «Получить запись».
Исходное число записано в 23456789101112131415161718192021222324252627282930313233343536-ой системе счисления.
Хочу получить запись числа в 23456789101112131415161718192021222324252627282930313233343536-ой системе счисления.
Получить запись
=
Выполнено переводов: 1792642
Также может быть интересно:
Системы счисления
Системы счисления делятся на два типа: позиционные и не позиционные. Мы пользуемся арабской системой, она является позиционной, а есть ещё римская − она как раз не позиционная. В позиционных системах положение цифры в числе однозначно определяет значение этого числа. Это легко понять, рассмотрев на примере какого-нибудь числа.
Пример 1. Возьмём число 5921 в десятичной системе счисления. Пронумеруем число справа налево начиная с нуля:
Число: | 5 | 9 | 2 | 1 |
Позиция: | 3 | 2 | 1 | 0 |
Число 5921 можно записать в следующем виде: 5921
= 5000+900+20+1
= 5·103+9·102+2·101+1·100
. Число 10 является характеристикой, определяющей систему счисления. В качестве степеней взяты значения позиции данного числа.
Пример 2. Рассмотрим вещественное десятичное число 1234.567. Пронумеруем его начиная с нулевой позиции числа от десятичной точки влево и вправо:
Число: | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Позиция: | 3 | 2 | 1 | 0 | -1 | -2 | -3 |
Число 1234.567 можно записать в следующем виде: 1234.567
= 1000+200+30+4+0.5+0.06+0.007
= 1·103+2·102+3·101+4·100+5·10-1+6·10-2+7·10-3
.
Перевод чисел из одной системы счисления в другую
Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.
Перевод чисел из любой системы счисления в десятичную систему счисления
Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:
1. Перевести число 1001101.11012
в десятичную систему счисления.
Решение: 10011.11012
= 1·24+0·23+0·22+1·21+1·20+1·2-1+1·2-2+0·2-3+1·2-4
= 16+2+1+0.5+0.25+0.0625
= 19.812510
Ответ: 10011.11012
= 19.812510
2. Перевести число E8F.2D16
в десятичную систему счисления.
Решение: E8F.2D16
= 14·162+8·161+15·160+2·16-1+13·16-2
= 3584+128+15+0.125+0.05078125
= 3727.1757812510
Ответ: E8F.2D16
= 3727.1757812510
Перевод чисел из десятичной системы счисления в другую систему счисления
Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.
Перевод целой части числа из десятичной системы счисления в другую систему счисления
Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.
3. Перевести число 27310
в восьмиричную систему счисления.
Решение: 273 / 8 = 34 и остаток 1, 34 / 8 = 4 и остаток 2, 4 меньше 8, поэтому вычисления завершены. Запись из остатков будет иметь следующий вид: 421
Проверка: 4·82+2·81+1·80
= 256+16+1
= 273
= 273
, результат совпал. Значит перевод выполнен правильно.
Ответ: 27310
= 4218
Рассмотрим перевод правильных десятичных дробей в различные системы счисления.
Перевод дробной части числа из десятичной системы счисления в другую систему счисления
Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью. Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.
4. Перевести число 0.12510
в двоичную систему счисления.
Решение: 0.125·2 = 0.25
(0 — целая часть, которая станет первой цифрой результата), 0.25·2 = 0.5
(0 — вторая цифра результата), 0.5·2 = 1.0
(1 — третья цифра результата, а так как дробная часть равна нулю, то перевод завершён).
Ответ: 0.12510
= 0.0012
programforyou.ru
Системы счисления. Перевод из одной системы в другую.
1. Порядковый счет в различных системах счисления.
В современной жизни мы используем позиционные системы счисления, то есть системы, в которых число, обозначаемое цифрой, зависит от положения цифры в записи числа. Поэтому в дальнейшем мы будем говорить только о них, опуская термин «позиционные».
Для того чтобы научиться переводить числа из одной системы в другую, поймем, как происходит последовательная запись чисел на примере десятичной системы.
Поскольку у нас десятичная система счисления, мы имеем 10 символов (цифр) для построения чисел. Начинаем порядковый счет: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Цифры закончились. Мы увеличиваем разрядность числа и обнуляем младший разряд: 10. Затем опять увеличиваем младший разряд, пока не закончатся все цифры: 11, 12, 13, 14, 15, 16, 17, 18, 19. Увеличиваем старший разряд на 1 и обнуляем младший: 20. Когда мы используем все цифры для обоих разрядов (получим число 99), опять увеличиваем разрядность числа и обнуляем имеющиеся разряды: 100. И так далее.
Попробуем сделать то же самое в 2-ной, 3-ной и 5-ной системах (введем обозначение для 2-ной системы, для 3-ной и т.д.):
0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
2 | 10 | 2 | 2 |
3 | 11 | 10 | 3 |
4 | 100 | 11 | 4 |
5 | 101 | 12 | 10 |
6 | 110 | 20 | 11 |
7 | 111 | 21 | 12 |
8 | 1000 | 22 | 13 |
9 | 1001 | 100 | 14 |
10 | 1010 | 101 | 20 |
11 | 1011 | 102 | 21 |
12 | 1100 | 110 | 22 |
13 | 1101 | 111 | 23 |
14 | 1110 | 112 | 24 |
15 | 1111 | 120 | 30 |
Если система счисления имеет основание больше 10, то нам придется вводить дополнительные символы, принято вводить буквы латинского алфавита. Например, для 12-ричной системы кроме десяти цифр нам понадобятся две буквы ( и ):
0 | 0 |
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
7 | 7 |
8 | 8 |
9 | 9 |
10 | |
11 | |
12 | 10 |
13 | 11 |
14 | 12 |
15 | 13 |
2.Перевод из десятичной системы счисления в любую другую.
Чтобы перевести целое положительное десятичное число в систему счисления с другим основанием, нужно это число разделить на основание. Полученное частное снова разделить на основание, и дальше до тех пор, пока частное не окажется меньше основания. В результате записать в одну строку последнее частное и все остатки, начиная с последнего.
Пример 1. Переведем десятичное число 46 в двоичную систему счисления.
Пример 2. Переведем десятичное число 672 в восьмеричную систему счисления.
Пример 3. Переведем десятичное число 934 в шестнадцатеричную систему счисления.
3. Перевод из любой системы счисления в десятичную.
Для того, чтобы научиться переводить числа из любой другой системы в десятичную, проанализируем привычную нам запись десятичного числа.
Например, десятичное число 325 – это 5 единиц, 2 десятка и 3 сотни, т.е.
Точно так же обстоит дело и в других системах счисления, только умножать будем не на 10, 100 и пр., а на степени основания системы счисления. Для примера возьмем число 1201 в троичной системе счисления. Пронумеруем разряды справа налево начиная с нуля и представим наше число как сумму произведений цифры на тройку в степени разряда числа:
Это и есть десятичная запись нашего числа, т.е.
Пример 4. Переведем в десятичную систему счисления восьмеричное число 511.
Пример 5. Переведем в десятичную систему счисления шестнадцатеричное число 1151.
4. Перевод из двоичной системы в систему с основанием «степень двойки» (4, 8, 16 и т.д.).
Для преобразования двоичного числа в число с основанием «степень двойки» необходимо двоичную последовательность разбить на группы по количеству цифр равному степени справа налево и каждую группу заменить соответствующей цифрой новой системы счисления.
Например, Переведем двоичное 1100001111010110 число в восьмеричную систему. Для этого разобьем его на группы по 3 символа начиная справа (т.к. ), а затем воспользуемся таблицей соответствия и заменим каждую группу на новую цифру:
Таблицу соответствия мы научились строить в п.1.
0 | 0 |
1 | 1 |
10 | 2 |
11 | 3 |
100 | 4 |
101 | 5 |
110 | 6 |
111 | 7 |
Т.е.
Пример 6. Переведем двоичное 1100001111010110 число в шестнадцатеричную систему.
0 | 0 |
1 | 1 |
10 | 2 |
11 | 3 |
100 | 4 |
101 | 5 |
110 | 6 |
111 | 7 |
1000 | 8 |
1001 | 9 |
1010 | A |
1011 | B |
1100 | C |
1101 | D |
1110 | E |
1111 | F |
5.Перевод из системы с основанием «степень двойки» (4, 8, 16 и т.д.) в двоичную.
Этот перевод аналогичен предыдущему, выполненному в обратную сторону: каждую цифру мы заменяем группой цифр в двоичной системе из таблицы соответствия.
Пример 7. Переведем шестнадцатеричное число С3A6 в двоичную систему счисления.
Для этого каждую цифру числа заменим группой из 4 цифр (т.к. ) из таблицы соответствия, дополнив при необходимости группу нулями вначале:
Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)
Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.
ege-study.ru
Сводная таблица переводов целых чисел из одной системы счисления в другую приведена в таблице 3.1.
Таблица 3.1. Перевод чисел из одной системы счисления в другую
10-я | 2-я | 8-я | 16-я | 10-я | 2-я | 8-я | 16-я |
0 | 0 | 0 | 0 | 10 | 1010 | 12 | А |
1 | 1 | 1 | 1 | 11 | 1011 | 13 | В |
2 | 10 | 2 | 2 | 12 | 1100 | 14 | C |
3 | 11 | 3 | 3 | 13 | 1101 | 15 | D |
4 | 100 | 4 | 4 | 14 | 1110 | 16 | E |
5 | 101 | 5 | 5 | 15 | 1111 | 17 | F |
6 | 110 | 6 | 6 | 16 | 10000 | 20 | 20 |
7 | 111 | 7 | 7 | 17 | 10001 | 21 | 21 |
8 | 1000 | 10 | 8 | 18 | 10010 | 22 | 22 |
9 | 1001 | 11 | 9 | 19 | 10011 | 23 | 23 |
Рассмотрим только те системы счисления, которые применяются в компьютерах — десятичную, двоичную, восьмеричную и шестнадцатеричную.
Для определенности возьмем произвольное десятичное число, например 46, и для него выполним все возможные последовательные переводы из одной системы счисления в другую.
Порядок переводов определим в соответствии с рисунком:
На этом рисунке использованы следующие обозначения:
в кружках записаны основания систем счисления;
стрелки указывают направление перевода;
номер рядом со стрелкой означает порядковый номер соответствующего примера в сводной таблице 2.1.
Например: означает перевод из двоичной системы в шестнадцатеричную, имеющий в таблице порядковый номер 6.
3.4. Арифметические операции в двоичной системе счисления
Рассмотрим основные арифметические операции: сложение, вычитание, умножение и деление. Правила выполнения этих операций в десятичной системе хорошо известны — это сложение, вычитание, умножение столбиком и деление углом. Эти правила применимы и ко всем другим позиционным системам счисления. Только таблицами сложения и умножения надо пользоваться особыми для каждой системы.
Сложение
При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.
Пример 1. Сложим числа 15 и 6 в различных системах счисления.
Шестнадцатеричная: F16+616
| Ответ: 15+6 = 2110 = 101012 = 258 = 1516. Проверка. Преобразуем полученные суммы к десятичному виду: 101012 = 24 + 22 + 20 = 16+4+1=21, 258 = 2*81 + 5*80 = 16 + 5 = 21, 1516 = 1*161 + 5*160 = 16+5 = 21. |
Пример 2. Сложим числа 15, 7 и 3.
Шестнадцатеричная: F16+716+316
| Ответ: 5+7+3 = 2510 = 110012 = 318 = 1916. Проверка: 110012 = 24 + 23 + 20 = 16+8+1=25, 318 = 3*81 + 1*80 = 24 + 1 = 25, 1916 = 1*161 + 9*160 = 16+9 = 25.
|
Пример 3. Сложим числа 141,5 и 59,75.
Ответ: 141,5 + 59,75 = 201,2510 = 11001001,012 = 311,28 = C9,416
Проверка. Преобразуем полученные суммы к десятичному виду: 11001001,012 = 27 + 26 + 23 + 20 + 2-2 = 201,25 311,28 = 3*82 + 1•81 + 1*80 + 2*8-1 = 201,25 C9,416 = 12*161 + 9*160 + 4*16-1 = 201,25
Выполнение арифметических операций в двоичной системе счисления
studfiles.net
Системы счисления — Перевод чисел из одной системы счисления в другую
Перевод чисел в десятичную систему счисления
Перевод из двоичной системы в десятичную
Преобразуем двоичное число 1001011 из первого примера
Пример Перевести число 11010101 из двоичной системы в десятичную.
Преобразуем число:110101012= 1 * 27 + 1 * 26 + 0 * 25 + 1 * 24 + 0 * 23 + 1 * 22 + 0 * 21 + 1 * 20=128+64+0+16+0+4+0+1=21310
Перевод из восьмеричной системы в десятичную
Преобразуем восьмеричное число 572.
Пример Перевести число 572 из восьмеричной системы в десятичную.
Преобразуем число:5728=5 * 82 + 7 * 81 + 2 * 80=320+56+2=37810
Перевод из шестнадцатеричной системы в десятичную
Числа в шестнадцатеричной системе состоят из цифр 0-9 и букв A, B, C, D, E, F, таблица соответствия:
десятичная | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
шестнадцатеричная | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
Преобразуем шестнадцатеричное число A5C.
Пример Перевести число A5C из шестнадцатеричной системы в десятичную.
Преобразуем число:A5C16= 10 * 162 + 5 * 161 + 12 * 160 =2560+80+12=265210
calcs.su