cart-icon Товаров: 0 Сумма: 0 руб.
г. Нижний Тагил
ул. Карла Маркса, 44
8 (902) 500-55-04

Примеры на умножение деление сложение вычитание – Сложение, вычитание, умножение и деление. ереместительное, сочетательное свойства. Примеры решение задач.

Содержание

Сложение, вычитание, умножение и деление. ереместительное, сочетательное свойства. Примеры решение задач.

Арифметические операции

Сложение:

Умножение:

Вычитание:

 

 Деление:

 Переместительное свойство

Это свойство относится только к двум операциям: сложение и умножение, так как только в этих операциях каждое из слагаемых или множителей имеет одинаковое значение.

Cочетательное свойство.

Следующее свойство – сочетательное. Это свойство рассматривается для сложения и умножения.

 

Переместительное и сочетательное свойства для сложения и умножения позволяют объединять слагаемые и множители в группы, менять их местами. Эти свойства позволяют считать быстрее и без ошибок.

Распределительные свойства

Следующие свойства раcпределительные. Они показывают, как можно вычислить выражение, если в нем используются операция умножение вместе со сложением или вычитанием (распределяют порядок вычисления):

 

Противоположный элемент

 

Нейтральный элемент – 0.

Ноль - это нейтральный элемент относительно сложения целых чисел:

Также обрати внимание на порядок  действий, если скобки не расставлены. Итак, у нас есть 4 операции, они выполняются в следующем порядке:

  1.  Умножение и деление – в порядке следования слева направо;
  2.  Сложение и вычитание – в порядке следования слева направо.
  3. При наличии скобок сначала выполняются действия в скобках в указанном выше порядке, а затем все остальные действия вне скобок опять же с соблюдением указанного выше порядка.

Задача 1. Вычислить  \(-55+(-7)+18+7.\)

Решение.

  1. Воспользуемся переместительным свойством для удобства вычисления: \(-7+7-55+18\)

 

  1. \(-7\) и \(7\) противоположные элементы, итого: \(-55+18=-37\)

Ответ:\(-37\)

Задача 1. Вычислить   \((-7+9)+7*2-56\).

  1. Первое действие выполняем в скобках и умножение: \(2+ 7*2\)
  2. выполняем умножение, затем сложение и вычитание: \(2+14-56=16-56=-40.\)

Ответ:\(-40.\)

Запишись на бесплатный пробный урок тут и разберись с тем, что тебе непонятно.

 

 

 

 

 

Больше уроков и заданий по математике вместе с преподавателями нашей онлайн-школы "Альфа". Запишитесь на пробное занятие уже сейчас!

Запишитесь на бесплатное тестирование знаний!

myalfaschool.ru

примеры на сложение, вычитание, умножение и деление

Категория: Начальная школа

Чтобы довести счетные навыки до автоматизма, нужна практика и еще раз практика. Ребенок сможет считать быстро и в уме только после решения как минимум пары тысяч примеров, а это значит, нужно решать каждый день, хотя бы понемногу. Школа не вправе давать на дом большой объем заданий, а на уроках автоматизировать навык быстрого и правильного решения примеров просто невозможно из-за ограничения по времени. Поэтому, родители и репетиторы, все в ваших руках! Отличное время для работы с тренажерами по математике - летние каникулы. Нет, не нужно нагружать ребенка и заставлять решать целыми днями, но распечатайте своему чаду 1 лист из тренажера на выбор, пусть решает по чуть-чуть, по 5 примеров утром и вечером. 

Кликайте по картинкам, чтобы открыть их в большом размере, увеличенный лист тренажера можно скачать и распечатать.

Примеры по математике за 3 класс

А еще у нас есть отличный онлайн тренажер по математике! Родителям не нужно ничего распечатывать и проверять, все это за вас совершенно бесплатно сделаем мы! Выбирайте режим и вперед >>

© Копирование допустимо только с прямой активной ссылкой на страницу с оригиналом статьи.
При любых заболеваниях не занимайтесь диагностикой и лечением самостоятельно, необходимо обязательно обратиться к врачу - специалисту.
Изображения обложек учебной литературы приведены на страницах сайта исключительно в качестве иллюстративного материала (ст. 1274 п. 1 части четвертой Гражданского кодекса РФ)

7gy.ru

примеры на умножение и деление, сложение и вычитание

Ваш ребенок еще только учится в начальной школе, а вы уже задумываетесь о его дальнейшей учебе, развитии и будущем? Это очень похвально. А думали ли вы над тем, что успеваемость ребенка можно улучшить, если заниматься с ним ежедневно по математике всего лишь 15 минут в день дополнительно? И это не выдумки. В материалах этой статьи мы приведем примеры и задачи для школьников начальной школы по математике, а именно, для третьеклассников. (Для удобства решения приведенные ниже задания вы можете распечатать).

Как учить ребенка учиться

Умеет ли ваш ребенок учиться? Уверена, что многих родителей этот вопрос поставил в тупик. А действительно, что значит «уметь учиться»? Когда ваш юный школьник только пошел в школу, после занятий, возможно, он бежал домой и очень хотел сразу же делать уроки. Так бывает, когда дети очень ждут поступления в 1 класс. Но со временем интересы к своевременному выполнению домашнего задания ослабевают и «домашка» становится скучным времяпровождением.

А ведь именно нежелание выполнять домашние задания, готовиться к школьным рефератам, семинарам и викторинам, становится основной причиной того, что ребенок вначале не хочет, а после и не умеет учиться. Пробелы в знаниях могут накапливаться словно снежный ком, снижая успеваемость школьника и убивая в нем желание учиться.

Чтобы школьник учился этой сложной и ответственной науке – учиться – родители должны всячески помогать ему: составить распорядок дня, учить ребенка выполнять домашнее задание наперед, прорешивать или прописывать дополнительные упражнения, чтобы тренировать и руку для письма, и мозг для устного счета. Математике дается детям начального звена сложнее всего, именно поэтому мы и подготовили для школьников 3 класса этот материал.

Примеры по математике на умножение и деление

Еще во втором классе дети выучили таблицу умножения. Если вы сейчас находитесь в полном заблуждении, как выучить с ребенком таблицу умножения, то рекомендуем к ознакомлению следующий материал по ссылке. На протяжении второго класса школьники постепенно осваивали простые примеры и задачи, используя таблицу умножения, а в третьем классе они оттачивают навыки умножения и сложения.

Задание 1

Заменить сложение вычитанием в тех примерах, в которых от замены знака ответ не изменится:

5 + 5 + 5 =
1 + 1 + 1 + 1 =
0 + 0 + 0 + 0 + 0 =
8 + 8 + 8 + 8 =
7 + 7 — 7 + 7 =
7 + 7 + 7 — 7 =
14 + 14 =
61 + 61 =

Подсказка:

5 + 5 + 5 = 15, если заменить знак «+» на знак «•», то получится
5 • 5 • 5 = 125. 15 не равно 125. Значит, в первом равенстве заменить знак «+» на знак «•» нельзя.

По аналогии решаем стальные равенства и делаем выводы о возможной или невозможной замене знака «+» на знак «•».

Задание 2

Какие выражения нельзя заменить суммой, чтобы ответ не изменился:

0 • 4 =
1 • 0 =
1 • 1 =
1 • 6 =
0 • 9 =
7 • 0 =
5 • 2 =
2 • 2 =

Подсказка:

Вспомните, каким правилом следует пользоваться при умножении на ноль.

Задание 3

Решите примеры:

45 : 5 + 1 =
45 : 5 • 1 =
543 — 5 • 1 =
(543 — 5) • 1 =
423 + 7 • 0 =
(423 + 7) • 1 =
10 — 0 + 4 =
10 • 0 + 4 =

Задание 4

Из каждого выражения на умножение составьте выражения на деление:

6 • 8 =
7 • 1 =
4 • 0 =
0 • 3 =
4 • 9 =

Подсказка

6 • 8 = 48
48 : 8 = 6
48 : 8 = 6

Задание 5

Какое значение имеют следующие выражение:

а : а =
а : 1 =
0 : а =
а : 0 =

Задание 6

Решите примеры:

(596 + 374) • 1 =
596 + 374 • 1 =
(596 + 374) • 0 =
596 + 374 + 0 =
0 • 320 : 1 =
0 + 320 : 1 =

Обязательно повторите с ребенком правила умножения и деления числа на единицу и умножения или деления числа на ноль, а также особенности деления ноля на любое число. Часто именно в этих примерах дети делают ошибки, которые влекут за собой дальнейшее неправильное решение примеров, выражений и задач.

Задание 7 (задача)

В оздоровительный лагерь привезли фрукты: 7 ящиков винограда и 5 ящиков персиков. Масса привезенных персиков составляет 40 килограммов. Какая масса винограда, если ящик винограда на 1 килограмм весит больше, чем ящик персиков.

Решение

Найдем, сколько весит один ящик персиков. Известно, что общая масса персиков составляет 40 кг, а всего ящиков – 5.

Первое действие:
40 : 5 = 8 (кг) весит один ящик персиков.

Теперь найдем, сколько весит один ящик винограда, если известно, что он тяжелее на 1 кг, чем ящик персиков.

Второе действие:
8 + 1 = 9 (кг) весит один ящик винограда.

Теперь находим общую массу всего винограда, если известно, что один ящик весит 9 кг, а всего винограда – 7 ящиков.

Третье действие:
9 • 7 = 63 (кг) – общая масса винограда.

Ответ: масса привезенного винограда составляет 63 кг.

Задание 8

Сосна может расти 600 лет, береза – 350 лет. А ива – в 6 раз меньше от сосны. Что может расти дольше береза или ива? И насколько лет?

Решение

Вначале рассчитаем, сколько лет может расти ива, если известно, что она растет в 6 раз меньше, чем сосна.

Первое действие:
600 : 6 = 100 (лет) может расти ива.

Теперь, когда известно, что ива может расти 100 лет, сравним продолжительность «жизни» березы и ивы. Известно, что береза растет 350 лет, а ива – 100. 350 больше чем 100, значит береза может расти дольше ивы. Чтобы рассчитать, на сколько береза может расти дольше ивы, решаем равенство.

Второе действие:
350 — 100 = 250 (лет) – на столько береза может расти дольше ивы

Ответ: береза может расти дольше ивы на 250 лет.

Важно! Если задачу можно решить несколькими способами, обязательно сообщите об этом ребенку. Пусть потренирует логику и начертит все возможные схем решения задачи, т.е. составить схематическое условие. Ведь правильно составленное условие задачи – это 90% успешного решения.

Задание 9

В понедельник гусеница начала ползти вверх по дереву высотой 9 метров. За день она поднялась вверх на 5 метров, а за ночь – опустилась на 2 метра. На какой день гусеница достигнет верхушки дерева?

Решение

Для начала рассчитаем, на сколько метров поднимается гусеница вверх за один день, с учетом того, что ночью на опускается.

Первое действие:
5 — 2 = 3 (м) гусеница проползает за сутки вверх.

Теперь найдем количеств дней, необходимых на преодоление расстояния 9 метров вверх по дереву.

Второе действие:
9 : 3 = 3 (дня) нужно гусенице, чтобы достичь вершины дерева.

Ответ: 3 дня нужно гусенице, чтобы достичь вершины дерева.

Задание 10

В коробке было 18 килограммов печенья. Сначала из нее взяли 13 килограммов печенья, потом досыпали в 4 раза больше, чем оставалось. Сколько килограммов печенья стало в коробке.

Решение

Сначала найдем, сколько килограммов печенья осталось в коробке, после того, как из нее забрали 13 килограммов.

Первое действие:
18 — 13 = 5 (кг) печенья осталось в коробке

Теперь рассчитаем сколько килограммов печенья досыпали в коробку.

Второе действие:
5 • 4 = 20 (кг) досыпали

Сложим тот вес, который оставался в коробке, и тот, который досыпали, чтобы найти, сколько килограммов печения стало в коробке.

Третье действие:
5 + 20 = 25 (кг) стало

Ответ: 25 килограммов печения стало в коробке.

Задание 11

За лето хозяйка вырастила 208 домашних птиц. Кур и уток было 129, а уток и гусей – 115. Сколько кур, уток и гусей вырастила хозяйка за лето?

Решение

Известно, что кур и уток было 129, а всего птиц – 208. Значит, можно найти количество гусей.

Первое действие:
208 (птиц) – 129 (уток + кур) = 79 гусей

Также известно, что уток и гусей всего 115, значит мы можем найти, сколько было кур.

Второе действие:

208 (птиц) – 115 (уток + гусей) = 93 кур

Теперь, когда мы знаем количество гусей и кур, а также общее количество домашних птиц, мы можем найти количество уток.

Третье действие:
208 — (79 + 93) = 36 уток

Ответ: за лето хозяйка вырастила 79 гусей, 93 кур и 36 уток.

Второй вариант решения

Известно, что кур и уток было 129, а всего птиц – 208. Значит, можно найти количество гусей.

Первое действие:
208 (птиц) – 129 (уток + кур) = 79 гусей

Также известно, что уток и гусей всего 115, значит мы можем найти, сколько было уток

Второе действие:
115 (уток + гусей) – 79 (гусей) = 36 уток

Теперь, когда мы знаем количество гусей и уток по отдельности, а также общее количество домашних птиц, мы можем найти количество кур.

Третье действие:
208 – (79 + 36) = 208 – 115 = 93 кур

Ответ: за лето хозяйка вырастила 79 гусей, 93 кур и 36 уток.

Примеры и задачи по математике на сложение и вычитание

Основной задачей заданий и примеров по математике на сложение и вычитание в третьем классе является популяризация математических знаний и идей, поддержка и развитие математических знаний школьников, стимулирование и мотивация учеников в изучении естественно-математический предметов.

Задание 1

Реши уравнения:

Х – 40 = 60
Х + 4 = 61
Х – 16 = 25
Х + 25 = 84
Х – 45 = 251
Х + 56 = 106
Х + 78 = 301

Задание 2

Расставьте скобки так, чтобы ответом выражения в первом случае было 6, а в втором – 2:

12 : 2 + 2 • 2 =

Подсказка

12 : (2 + 2) • 2 = 6
12 : (2 + 2 • 2) = 2

Важно! Некоторые условия составлены таким образом, чтобы ребенок включал логическое мышление. Прорешивая такие задания он мыслит, делает предположения, размышляет, и находит правильное решение задания.

Задание 3

Перевести в одну систему измерения и решить выражения:

1 м – 5 дм =
1 м – 5 см =
6 м 5 дм – 8 дм =
5 см + 5 см =
15 см + 5 дм =
3 дм – 6 см =
3 дм 5 см – 15 см =
1 дм 2 см – 3 см =
1 м 6 дм – 8 дм =

Задание 4

Из каждого выражения произведения отнять 15 и записать новые выражение и решить их:

7 • 3 =
7 • 6 =
7 • 9 =
8 • 6 =
8 • 4 =
3 • 9 =
4 • 4 =
5 • 7 =

Подсказка

Если 7 • 3 = 21, то 21 – 15 = 6

Задание 5

Решить примеры:

7 • 6 + 7 • 4 =
21 : 3 – 6 =
(35 – 28) • 5 =
(68 – 26) : 7 =
7 + (6 : 2) =
3 – 14 : 2 =
60 – 63 : 7 =
81 – 56 : 7 =
50 + 42 : 7 =

Задание 6 (задача)

В шести одинаковых бочонках 24 литра воды. Сколько литров воды в сети таких же бочонках, на сколько литров больше во втором случае, чем в первом?

Решение

Вначале найдем, сколько воды вмещается в один бочонок.

Первое действие:
24 : 6 = 4 (л) в одном бочонке

Теперь рассчитаем, сколько воды в семи одинаковых бочонках

Второе действие:
4 • 7 = 28 (л) в сети одинаковых бочонках

Найдем ответ на главный вопрос задачи, на сколько литров больше во втором случае, чем в первом.

Третье действие:
28 – 24 = 4 (л) на столько литров больше во втором случае, чем в первом

Ответ: на 4 литра воды больше во втором случае, чем в первом

Задание 7

Отец и сын купили на рынке картошку в 6 одинаковых сетках. Отец принес домой 4 сетки, а сын 2. Всего получилось 18 килограммов картошки. Сколько килограммов принес отец? Сколько килограммов принес сын? На сколько больше килограммов картошки принес отец?

Решение

Рассчитаем, сколько картошки было в одной сетке, если известно, то всего принести 18 килограммов в 6 одинаковых сетках.

Первое действие:
18 : 6 = 3 (кг) в одной сетке.

Теперь узнаем сколько килограммов принес отец и сколько килограммов принес сын.

Второе действие:
3 • 4 = 12 (кг) принес отец

Третье действие:
3 • 2 = 6 (кг) принес сын

Найдем искомую разницу.

Четвертое действие:
12 – 6 = 6 (кг) на столько больше принес отец.

Ответ: Отец принес на 6 килограммов больше картошки, чем сын.

Задание 8

За 5 часов работы двигателя было израсходовано 30 литров бензина. Сколько бензина будет израсходовано за 8 часов работы двигателя. На сколько больше двигатель израсходует бензина за разницу во времени?

Решение

Рассчитаем, сколько бензина расходует двигатель за час своей работы.

Первое действие:
30 : 5 = 6 (л) за один час работы

Рассчитаем, сколько составляет разница во времени?

Второе действие:
8 – 5 = 3 (ч) разница во времени

Теперь можно рассчитать, сколько бензина израсходовано за оставшиеся 3 часа.

Третье действие:
3 • 6 = 18 (л) потрачено за 3 часа.

Ответ: за 3 часа двигатель истратил 18 литров бензина

Второй способ решения

Рассчитаем, сколько бензина расходует двигатель за час своей работы.

Первое действие:
30 : 5 = 6 (л) за один час работы

Рассчитаем, сколько бензина будет израсходовано за 8 часов работы двигателя.

Второе действие:
8 • 6 = 48 (л) израсходовано за 8 часов работы двигателя

Теперь можно рассчитать разницу потраченного топлива.

Третье действие:
48 – 30 = 18 (л) разница потраченного топлива

Ответ: за 3 часа двигатель истратил 18 литров бензина

Важно! Задания на сложение и вычитание не исключают в своем условии или решении возможность других математических действий, например, умножения или деления. Ученик третьего класса уже должен уметь различать в условии требования к сложению и умножению, делению и вычитанию. Именно потому задания по математике для этого класса часто носят смешанный характер.

Задание 9

В двух прудах плавало 56 уток. Когда из первого пруда во второй перелетело 7 уток, то в нем осталось 25. Сколько уток с самого начала плавало во втором пруду?

Решение

Известно, что после того, как из первого пруда улетело 7 уток, в нем осталось 25. Находим количество уток в первом пруду с самого начала.

Первое действие:
7 + 25 = 32 (утки) было в первом пруду.

Теперь можем найти, сколько уток плавало во втором пруду с самого начала.

Второе действие:
56 – 32 = 24 (утки) было во втором пруду.

Ответ: с самого начала во втором пруду было 24 утки.

Задание 10

С первого куста собрали 9 килограммов ягод. Со второго куста собрали на 3 килограммов больше, чем с первого, а с третьего – на 2 килограммов больше, чем со второго. Сколько килограммов ягод собрали с третьего куста? Сколько всего ягод собрали?

Решение

Вначале найдем, сколько килограммов ягод собрали со второго куста.

Первое действие:
9 + 3 = 12 (кг) ягод со второго куста

Теперь определяем, сколько килограммов ягод собрали с третьего куста

Второе действие:
12 + 2 = 14 (кг) год с третьего куста

Когда все составляющие известны, находим ответ на главный вопрос задачи.

Третье действие:
9 + 12 + 14 = 35 (кг) ягод всего

Ответ: всего собрали 35 килограммов ягод.

Вместо заключения

Уделяйте математике достаточно внимания уже с начальной школы. Этот предмет не только тренируем мозг в устном счете, но и умении логически мыслить, развивать смекалку. Постепенно привыкая к выполнению дополнительных и основных заданий, ребенок учится учиться, выполнять требования учителя, грамотно планировать свое время, распределять время для учебы и досуга.

Математические задания для третьеклассников моно составлять самостоятельно по приведенным нами аналогии, это не составит особого труда. Зато ваш ученик сможет больше тренироваться в математике, выполнять задания на каникулах и выходных, а также заниматься дополнительно после школы.

childage.ru

Генератор примеров по математике

В помощь родителям - генератор примеров по математике, и заданий по русскому языку
Вы можете сгенерировать примеры любой сложности, а затем распечать их или решать в интерактивном режиме
Генератор примеров на сложение и вычитание. Можно настроить диапазон числел и ответов: до 10, до 20, до 100, примеры с трёхзначными, четёрыхзначными и пятизначными сичлами. Настраивается сложность примеров: с переходом через десяток или без перехода, сложение или вычитание, действия с «удобными» числами или примеры повышенной сложности... Генератор примеров с пропусками значений: нужно найти не просто сумму или разность, а слагаемые или вычитаемые. Протитип задач с иксами. Можно настроить диапазон чисел и сложность примеров...
Генератор неравенств: сравнение результатов примеров. Кроме диапазона чисел настраивается сложность примеров: на сколько отличаются правая и левая части, а также операции могут быть с «удобными» или «неудобными» числами... Генератор примеров на умножение и деление. Умножение на любые числа или на выбранное значение. Примеры на деление с остатком...
Уравнения с одним неизвестным - действия с умножением на скобку, с множителем у наизвестных.
Уравнения для 4 класса - с целыми числами.
Задачи на:
- расстояние, скорость и время
- вычисление периметра и площади
Задачи на то, как зная один параметр вычислить другой в различных вариациях.
Генератор заданий на словарные слова. Можно выбрать набор словарных слов (для 1 или 2 класса), добавить собственный набор словарных слов, и вывести их с прочерками вместо букв. Для каждого примера словарные слова перемешиваются.  
 
Примеры онлайн
 
Назначение генератора примеров

Назначение генератора - выдавать в автоматическом режиме примеры по математике и задания по русскому языку по заданным параметрам.

Выводятся примеры в 3 видах:

  • Готовый форматированный файл, готовый к печати из любого текстового редактора;
  • Вывод примеров для переноса в другие приложения, или для печати из браузера - с настриваемыми параметрами форматирования;
  • Интерактивные примеры для устного счёта с использованием, например, планшета, мобильного телефона, и т.п.

Настройка сложности примеров

Вы можете выбрать арифметические действия: только сложение, вычитание, или все действия.

Вы можете выбрать, какие числа используются будут использоваться в примерах и в ответах. Например: только однозначные числа, или числа до 20, до 100.

Так же можно регулировать «сложность» примеров - этот параметр отвечает за то, насколько «неудобными» в примерах будут числа.

Печать и вывод примеров

Готовые файлы для распечатки

Вы можете скачать примеры в виде готовых к распечатке файлов.
Для этого в блоке «Готовый файл для распечатки» установите количество страниц для вывода, нажмите «Изменить» и пройдите по ссылками «Файл заданий» или «Файл ответов». В файле заданий будут только задания с прочерками вместо ответов, а в файле ответов - примеры с ответами.

На каждой странице - 3 колонки по 34 примеров в каждой.
Для удобства, наверху у каждой колонки указан номер варианта (случайное число) - это номер совпадает в Файле заданий и Файле ответов.

Просто сохраните два файла на компьютере, а затем распечатайте их.

Печать из браузера или перенос в другое приложение

Вы можете распечатать примеры прямо из браузера.
Для этого в блоке «Свой формат печати» задайтие количество примеров, и нажмите «Изменить».

На открывшейся странице вы можете выбрать шрифт для печати, задать количество столбцов и примеров для вывода.

Воспользуйтесь меню «Файл > Предварительный просмотр» вашего браузера для контроля расположения примеров, а затем распечатайте примеры прямо из браузера.
Вы можете выбрать вариант «для ученика» - только задания или «для учителя» с ответами.

Интерактивная проверка устного счёта

Вы можете считывать примеры прямо с экрана планшета, мобильного телефона, и сразу проверять правильность решения.
Для этого в блоке «Интерактивные примеры» задайтие количество примеров, и нажмите «Изменить».

На открывашейся странице вы можете задать параметры для комфортного отображения примеров, настроив шрифт, количество колонок и выводимых примеров.

После того, как пример будет решён устно, правильность решения можно проверить щёлкнув на нём - откроется ответ.

Мобильная версия

Для мобильных телефонов есть специальная - мобильная версия генератора примеров, которая позволяет решать примеры в интерактивном режиме: после решения ребёнок может сразу проверить правльность решения.

См. проект «Примеры онлайн»

l1158.ru

«Сложение и вычитание, деление и умножение обыкновенных дробей»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ КАЗАХСТАН

КОСТАНАЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ

Реферат

На тему: «Сложение и вычитание, деление и умножение обыкновенных дробей».

Костанай

2011 год

СОДЕРЖАНИЕ

1. Из истории обыкновенных дробей ………………………………………..3

2. Действия с обыкновенными дробями ..............…………………………..5

2.1. Сложение и вычитание обыкновенных дробей ……………………........5

2.2. Умножение и деление обыкновенных дробей ………………………….7

3. Примеры на сложение, вычитание, умножение и деление дробей ……. 10

4. Список литературы …………………………………………………………...11

1. Из истории возникновения обыкновенных дробей.

Дроби появились в глубокой древности. При разделе добычи, при измерениях величин, да и в других похожих случаях люди встретились с необходимостью ввести дроби.

Древние египтяне уже знали, как поделить 2 предмета на троих, для этого числа –2/3- у них был специальный значок. Между прочим, это была единственная дробь в обиходе египетских писцов, у которой в числителе не стояла единица – все остальные дроби непременно имели в числителе единицу (так называемые основные дроби): 1/2; 1/3; 1/28; … . Если египтянину нужно было использовать другие дроби, он представлял их в виде суммы основных дробей. Например, вместо 8/15 писали 1/3+1/5. Иногда это бывало удобно. В папирусе Ахмеса есть задача :

«Разделить 7 хлебов между 8 людьми». Если резать каждый хлеб на 8 частей, придётся провести 49 разрезов.

А по-египетски эта задача решалась так: Дробь 7/8 записывали в виде долей: 1/2+1/4+1/8. Значит каждому человеку надо дать полхлеба, четверть хлеба и восьмушку хлеба; поэтому четыре хлеба разрезали пополам, два хлеба- на 4 части и один хлеб на 8 долей, после чего каждому дали его часть.

Но складывать такие дроби было неудобно. Ведь в оба слагаемых могут входить одинаковые доли, и тогда при сложении появится дробь вида 2/n. А таких дробей египтяне не допускали. Поэтому, папирус Ахмеса начинается с таблицы, в которой все дроби такого вида от 2/5 до 2/99 записаны в виде суммы долей. С помощью этой таблицы выполняли и деление чисел. Вот, например, как 5 делили на 21: 5/21

Умели египтяне также умножать и делить дроби. Но для умножения приходилось умножать доли на доли, а потом, быть может, снова использовать таблицу. Ещё сложнее обстояло с делением.

В древнем Вавилоне предпочитали наоборот, - постоянный знаменатель, равный 60-ти. Шестидесятеричными дробями, унаследованными от Вавилона, пользовались греческие и арабские математики и астрономы. Но было неудобно работать над натуральными числами, записанными по десятичной системе, и дробями, записанными по шестидесятеричной. А работать с обыкновенными дробями было уже совсем трудно. Поэтому голландский математик Симон Стевин предложил перейти к десятичным дробям.

Интересная система дробей была в Древнем Риме. Она основывалась на делении на 12 долей единицы веса, которая называлась асс. Двенадцатую долю асса называли унцией. А путь, время и другие величины сравнивали с наглядной вещью- весом. Например, римлянин мог сказать, что он прошел семь унций пути или прочел пять унций книги. При этом, конечно, речь шла не о взвешивании пути или книги. Имелось в виду, что пройдено 7/12 пути или прочтено 5/12 книги. А для дробей, получающихся сокращением дробей со знаменателем 12 или раздроблением двенадцатых долей на более мелкие, были особые названия.

Даже сейчас иногда говорят:”Он скрупулёзно изучил этот вопрос.” Это значит, что вопрос изучендо конца, что не одной самой малой неясности не осталось. А происходит странное слово “скрупулёзно” от римского названия 1/288 асса - “скрупулус”. В ходу были и такие названия: ”семис”- половина асса, “секстанс”- шестая его доля, “семиунция”- половина унции, т.е. 1/24 асса и т.д. Всего применялось 18 различных названий дробей. Чтобы работать с дробями, надо было помнить для этих дробей таблицу сложения и таблицу умножения. Поэтому римские купцы твёрдо знали, что при сложении триенса (1/3 асса) и секстанса получается семис, а при умножении беса (2/3 асса) на сескунцию( 2/3 унции, т.е.1/8 асса) получается унция. Для облегчения работы составлялись специальные таблицы, некоторые из которых дошли до нас.

Современную систему записи дробей с числителем и знаменателем создали в Индии. Только там писали знаменатель сверху, а числитель - снизу, и не писали дробной черты. А записывать дроби в точности, как сейчас, стали арабы.

Обыкновенная дробь – это число вида

, где m и n натуральные числа, например . Число m называется числителем дроби, nзнаменателем. Среди обыкновенных дробей различают правильные и неправильные дроби. Дробь называется правильной , если ее числитель меньше знаменателя, и неправильной , если ее числитель больше знаменателя или равен ему.

2. Действия с обыкновенными дробями.

2.1. Сложение и вычитание обыкновенных дробей.

Сложение обыкновенных дробей выполняется так:

а) если знаменатели дробей одинаковы, то к числителю первой дроби прибавляют числитель второй дроби и оставляют тот же знаменатель, т.е.

;

б) если знаменатели дробей различны, то дроби сначала приводят к общему знаменателю, предпочтительнее к наименьшему, а затем к числителю первой дроби прибавляют числитель второй дроби, т.е.

.

Вычитание обыкновенных дробей выполняют следующим образом:

а) если знаменатели дробей одинаковы, то от числителя первой дроби вычитают числитель второй дроби и оставляют тот же знаменатель, т.е.

.

б) если знаменатели различны, то сначала дроби приводят к общему знаменателю, а затем от числителя первой дроби вычитают числитель второй дроби, т.е.

.

Сложение и вычитание дробей. Если знаменатели дробей одинаковы, то для того, чтобы сложить дроби, надо сложить их числители, а для того, чтобы вычесть дроби, надо вычесть их числители (в том же порядке). Полученная сумма или разность будет числителем результата; знаменатель останется тем же.

Например:

1.

2.

3.

4.

5.

6.

Если знаменатели дробей различны, необходимо сначала привести дроби к общему знаменателю. При сложении смешанных чисел их целые и дробные части складываются отдельно. При вычитании смешанных чисел мы рекомендуем сначала преобразовать их к виду неправильных дробей, затем вычесть из одной другую, а после этого вновь привести результат, если требуется, к виду смешанного числа.

Например:

1.

2.

3.

4.

5.

6.

7.

8.

2.2. Умножение и деление обыкновенных дробей.

Умножение обыкновенных дробей выполняется следующим образом:

,

т.е. перемножаются отдельно числители, отдельно знаменатели, первое произведение делают числителем, второе – знаменателем.

При умножении дроби на натуральное число, числитель дроби умножают на это число, а знаменатель оставляют без изменения.

Если множители являются смешанными числами, то сначала их нужно записать в виде неправильных дробей, затем воспользоваться правилом умножения дробей.

Деление обыкновенных дробей выполняют следующим образом:

,

т.е. делимое

умножают на дробь , обратную делителю .

Умножение обыкновенной дроби на целое число.

Чтобы умножить дробь на целое число, достаточно числитель дроби умножить на это число, оставив прежний знаменатель.

mirznanii.com

Примеры по математике - генератор примеров

Сколько всего нужно узнать и выучить ребенку за короткий срок:

выучить буквы и цифры, научиться читать, писать, считать и решать.

Притом, что способности у всех деток разные.

Кто-то схватывает все "на лету", кому-то требуется чуть больше времени.

Чтобы закрепить и улучшить начальные навыки счета у детей, на сайте  "Быть МАМОЙ" создан онлайн - Генератор, который создает примеры и уравнения по математике для детей дошкольного и младшего школьного возраста.

С помощью такого онлайн генератора вы можете абсолютно бесплатно создать, скачать и распечатать готовые примеры на сложение и вычитание, на умножение и деление.

Готовые примеры по математике генерируются на странице в клеточку, что позволяет ребенку тренировать не только устный  счет, но и правильное написание цифр.
Генератор примеров и уравнений, имеет внутренние настройки, изменяя которые вы сможете создать примеры для детей разного возраста и уровня подготовки ( от 5 лет до 2-3 класса).

Чтобы получить и распечатать примеры по математике, вам нужно:

1. Задать (выбрать) параметры для заданий

  • по количеству примеров: 10, 20, 30, 60 (2листа), 90 (3 листа)
  • по виду задания: пример или уравнение
  • по функциям математических действий: сложение, вычитание, умножение и деление.
  • по диапазону чисел: от 1 до 100 (например - от 5 до 10, от 10 до 50 и т.п.)

2. Распечатать полученый файл. Предварительно вы можете сохранить файл с заданиями на компьютер или флешку.

ГЕНЕРАТОР ПРИМЕРОВ И УРАВНЕНИЙ

 

Если вы генерируете примеры в браузере "Firefox", возможно некорректное отображение pdf.файлов в результате генерации (генерируется пустая страница в клеточку, либо нет знаков математических действий)

В этом случае вам нужно:

1. Сохранить полученный (некорректный) документ на компьютер, а затем открыть и распечатать файл с примерами с вашего компьютера.
2. Открыть данную страницу в другом браузере (Chrome, Яндекс), скопировав адрес страницы и вставив его в адресную строку.

 

Используйте онлайн генератор примеров по математике, если:

- Ваш ребенок только начал изучать счет. Выберите самые начальные параметры для генерации. Чтобы получились самые простые примеры по математике.

- Вашему ребенку требуется дополнительная подготовка по математике.

- Вы собираетесь в длительную поездку. Решение примеров и уравнений будет  полезным занятием, которое поможет скоротать время в дороге.

 

Генератор примеров по математике будет очень удобен как для родителей, так и для учителей.  Благодаря  параметрам выбора  можно создать сколько угодно заданий разного уровня сложности для подготовки.

 

Преимущества генератора математических примеров.

- Не нужно заранее покупать задачники и пособия по математике с примерами и уравнениями.

- Чтобы получить примеры для решения, не нужно предварительно скачивать программу на компьютер. Все примеры генерируются онлайн.

- Вы можете скачать файл с примерами на компьютер и распечатать его в любое время.

- Примеры генерируются на странице в клеточку, что очень удобно для правильного написания цифр ребенком.

- Вы можете подобрать задания индивидуально для вашего ребенка в зависимости от его уровня подготовки.

 

Если у вас возникнут трудности или вопросы по использованию генератора примеров - не стесняйтесь, задавайте вопросы в комментариях.
Отзывы также приветствуются 🙂

 


Читайте похожие записи:

tobemum.ru

в каком порядке решаются примеры в которых сложение деление вычетание умножение? например 49-6*2 4:2=.

в твоем примере надо начинать с умножения, потом деление, а дальше вычитать! Представь, что умножение на наравне с делением, а вычитание наравне с сложением! НО умножение и деление стоят выше чем вычитание и сложение, и поэтому начинать надо обязательно с именно с умножения и деления в зависимости в каком порядке они стоят, а потом вычитать или складывать тоже в зависимости от примера: НАПРИМЕР, 59+3-1*5:3 тут первое умножение потом деление, складывать, и вычитать, или пример такой 21:7-6*5-1 тут деление, умножение, разность, и вторая разность.

сначало умножение и деление потом сложение и вычитание если есть и умножение и деление то делается первое то что стоит левее то есть слева направа так же как мы пишим если есть умножение но есть сложение в скобках делается сложение в скобках

По порядку умножение, деление. Потом по порядку остальное

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *