cart-icon Товаров: 0 Сумма: 0 руб.
г. Нижний Тагил
ул. Карла Маркса, 44
8 (902) 500-55-04

Отделить от других определенные органоиды клетки на основе различий – Олимпиадные задания по биологии (11 класс) по теме: Тесты для самопроверки знаний по биологии

Биология как наука. Методы научного познания

Биология как наука. Методы научного познания.

I вариант

1. Вывод о родстве растений и животных можно сделать на основании

1) хромосомной теории 3) теории гена

2) закона сцепленного наследования 4) клеточной теории

3. Для выявления изменений, происходящих в живой клетке в процессе митоза, используется метод

1) центрифугирования 3) меченых атомов

2) пересадки генов 4) микроскопии

2. Наиболее правильно следующее из утверждений:

1) только живые системы построены из сложных молекул

2) все живые системы обладают высокой степенью организации

3) живые системы отличаются от неживых составом химических элементов

4) в неживой природе не встречается высокая сложность организации системы

3.Отделить от других определенные органоиды клетки на основе различий в их плотности можно методом:

1) биохимическим 3) цитологическим

2) хроматографией 4) центрифугирования

4.Уровень жизни, на котором начинают проявляться межвидовые отношения, называется:

1) биогеоценотическим 3) организменным

2) популяционно-видовым 4) биосферным

5. В XX веке наиболее современное определение жизни дал:

1) Ф. Энгельс 3) Н. Вавилов

2) М. Волькенштейн 4) И. Мичурин

6. Методы получения новых сортов культурных растений разрабатывает наука

1) ботаника 3) селекция

2) генетика 4) биогеография

7. Микология — это наука о

1) животных 3) мхах

2) вирусах 4) грибах

8. Наивысшим уровнем организации живых систем является

1) организменный 3) биосферный

2) молекулярный 4) биогеоценотический

9. Способность организмов передавать свои признаки и особенности развития следующим поколениям называется

1) изменчивость 3) развитие

2) размножение 4) наследственность

10. Какая наука использует близнецовый метод исследования?

1) цитология 3) селекция

2) генетика 4) систематика

11. Главный признак живого –

1) движение 3) обмен веществ

2) увеличение массы 4) распад на молекулы

12. Какая наука классифицирует организмы на основе их родства?

1) экология 3) морфология

2) систематика 4) палеонтология

13.Какой из методов исследования был основным в самый ранний период развития биологии?

1) экспериментальный 3) сравнительно-исторический

2) микроскопирование 4) наблюдение и описание

14. Диссимиляция-

1) водный обмен 3) энергетический обмен

2) солевой обмен 4) пластический обмен

15. Живые организмы являются системами

1) закрытыми 3) открытыми

2) прикрытыми 4) управляемыми

16. Дезоксирибонуклеиновая кислота — это уровень организации живой природы:

1) клеточный 3) организменный

2) молекулярный 4) популяционный

17. Уровнем организации жизни в приведённом перечне является:

1) биохимический 3) клеточный

2) функциональный 4) прокариотический

18. Ученый, открывший яйцеклетку млекопитающих и установивший, что все многоклеточные организмы начинают своё развитие из одной клетки — зиготы:

1) Р.Гук 3) К.Бэр

2) А.Левенгук 4) Т.Шванн

19. Способность живых организмов поддерживать постоянство концентрации веществ, расположенных в цитоплазме клеток и межклеточной жидкости, — проявление свойства:

1) обмен веществ 3) гомеостаз

2) раздражимость 4) изменчивость

20. Отличия потомства, полученного при половом размножении,

от родительских особей по ряду признаков является проявлением свойства:

1) гомеостаз 3) изменчивость

2) раздражимость 4) наследственность

2 вариант

1. Для выявления изменений, происходящих в живой клетке в процессе митоза, используется метод

1) центрифугирования 3) меченых атомов

2) пересадки генов 4) микроскопии

2. Уровень, на котором начинает проявляться способность живых систем к обмену веществ, — это:

1) биосферный 3) организменный

2) популяционно-видовой 4) клеточный

3.Какое из приведенных утверждений наиболее правильно:

1) все организмы обладают одинаково сложным уровнем организации

2) все организмы обладают высоким уровнем обмена веществ

3) все организмы одинаково реагируют на окружающую среду

4) все организмы обладают одинаковым механизмом передачи наследственной информации

4.Общим для всех уровней организации жизни свойством является:

1) сложность строения системы

2) проявление закономерностей, действующих на каждом уровне

3) однородность элементов, составляющих систему

4) сходство качеств, которыми обладают разные системы

5. Основными химическими соединениями, определяющими биологические характеристики жизни, считаются:

1) вода и минеральные соли 3) соединения серы, фосфора

2) жиры и углеводы 4) нуклеиновые кислоты и белки

6. Первым с помощью светового микроскопа обнаружил клетки

1) М.Шлейден 3) Р.Гук

2) Ч.Дарвин 4) А.Левенгук

7. Процесс трансляции изучают на уровне

1) организменном 3) популяционно-видовом

2) молекулярном 4) биосферном

8. Необратимое направленное закономерное изменение объектов живой природы называют

1) наследственность 3) размножение

2) раздражимость 4) развитие

9. Для всех живых организмов характерна способность к

1) движению 3) питанию белками, жирами, углеводами

2) обмену веществ 4) неограниченному росту

10. Наука, изучающая два фундаментальных свойства живых организмов – наследственность и изменчивость, –

1) цитология 3) генетика

2) селекция 4) эмбриология

11. Какой уровень организации живого служит основным объектом изучения цитологии?

1) клеточный 3) биогеоценотический

2) популяционно-видовой 4) биосферный

12. Наука, изучающая строение, химический состав, функции,

индивидуальное развитие и эволюцию клеток живого

1) генетика 3) цитология

2) анатомия 4) физиология

13. Самый низший уровень организации живой материи:

1) молекулярный 3) электронный

2) атомный 4) органный

14. Онтогенез-

1) эволюция 3) историческое развитие

2) индивидуальное развитие 4) пластический обмен веществ

15. Движения лепестков тюльпана при распускании цветка —

1) настии 3) фототаксис

2) гелиотропизм 4) геотропизм

16. Наука цитология изучает:

1) строение клеток одноклеточных и многоклеточных организмов

2) строение органов и систем органов многоклеточных организмов

3) фенотипы организмов разных царств

4) морфологию растений и особенности их развития

17. Увеличение числа особей в популяции, преемственность между поколениями обеспечивается:

1) эволюцией 3) размножением

2) развитием 4) митозом

18. Метод, позволяющий установить последовательность этапов химического превращения какого-либо вещества

1) метод меченых атомов 3) центрифугирования

2) цитохимический 4) световая микроскопия

19. Ученый обобщивший имеющиеся знания о строении животных и растений,

сформулировавший первую клеточную теорию:

1) Р.Гук 3) К.Бэр

2) А.Левенгук 4) Т.Шванн

20. Р.Гук открыл ячеистые структуры, которые впоследствии назвал клетками, изучая объект:

1) кора дуба 3) сердцевина липы

2) пробка бузины 4) корень лука

3 вариант

1.Общая биология изучает:

1) строение и функции организма животных и растений

2) взаимосвязи живой и неживой природы

3) закономерности развития и функционирования живых систем

4) проблемы исторического развития жизни на Земле

2.Теория В.И. Вернадского описывает следующий уровень организации жизни:

1) биосферный 3) цитологический

2) биогеоценотический 4) организменный

3. Открытость живых систем связана с:

1) их строением и функциями

2) обменом веществами, энергией и информацией с внешней средой

3) процессами исторического развития

4) их способностью к самовоспроизведению

4.Первым надорганизменным уровнем жизни считается:

1) биосферный 3) популяционно-видовой

2) биогеоценотический 4) организменный

5. Явления круговорота веществ и энергии, происходящие при участии живых организмов, изучают на уровне

1) биосферном 3) популяционно-видовом

2) биогеоценотическом 4) организменном

6. Наука, изучающая функции целостного организма, отдельных клеток, органов и систем органов, называется:

1) анатомия 3) физиология

2) цитология 4) генетика

7.Термин «клетка» в науку ввел

1) Т.Шванн 3) Р.Гук

2) М.Шлейден 4) А.Левенгук

8. Все живые организмы объединяет

1) клеточное строение 3) наличие ядра в клетке

2) способность к фотосинтезу 4) способность к движению

9. Какой уровень организации живой природы представляет собой совокупность всех экосистем земного шара в их взаимосвязи?

1) биосферный 3) популяционно-видовой

2) экосистемный 4) биогеоценотический

10. Какой метод позволяет избирательно выделять и изучать органоиды клетки?

1) окрашивание 3) культуры тканей

2) центрифугирование 4) химический анализ

11. Какая наука изучает ископаемые остатки организмов?

1) биогеография 3) сравнительная анатомия

2) эмбриология 4) палеонтология

12.Наука, изучающая механизмы закономерности наследственности и

изменчивости организмов

1) генетика 3) цитология

2) анатомия 4) физиология

13. Совокупность сходных по строению клеток и межклеточного вещества представляет собой:

1) клеточный уровень 3) органный уровень

2) молекулярный уровень 4) тканевый уровень

14. Реакция простейших организмов на свет —

1) фототаксис 3) геотропизм

2) хемотаксис 4) рефлекс

15. Реакция амёбы на поваренную соль в капле воды —

1) гелиотропизм 3) геотропизм

2) фототаксис 4) хемотаксис

16. Для выявления общих анатомических признаков, характерных для царств живой природы, используют метод:

1) микроскопирования 3) сравнения

2) прогнозирования 4) моделирования

17. Способность организмов формировать конкретные ответные реакции на внешние и внутренние факторы:

1) гомеостаз 3) изменчивость

2) раздражимость 4) рефлекс

18. Ученый, впервые описавший ядро растительной клетки, сделавший вывод о том, что ядро является обязательной составной частью любой клетки

1) А.Левенгук 3) Р.Вирхов

2) К.Бэр 4) Р.Броун

19. Сужение зрачков глаз у человека при ярком освещении — это проявление свойства:

1) гомеостаз 3) изменчивость

2) раздражимость 4) наследственность

20. Отличия потомства, полученного при половом размножении,

от родительских особей по ряду признаков является проявлением свойства:

1) гомеостаз 3) изменчивость

2) раздражимость 4) наследственность

Ответы

вариант

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1

4

2

4

1

2

3

4

3

4

2

3

2

4

3

3

2

3

3

3

3

2

4

4

4

2

4

3

2

4

2

3

1

3

1

2

1

1

3

1

4

2

3

3

1

2

3

1

3

3

1

1

2

4

1

4

1

4

3

2

4

2

3

gigabaza.ru

Органоиды клетки, подготовка к ЕГЭ по биологии

Органоиды (органеллы) клетки — специализированные структуры клетки, выполняющие различные жизненно необходимые функции. Особенно сложно устроены клетки простейших, где одна клетка составляет весь организм и выполняет функции дыхания, выделения, пищеварения и многие другие.

Органоиды клетки подразделяются на:

  • Немембранные — рибосомы, клеточный центр, микротрубочки, органоиды движения (жгутики, реснички)
  • Одномембранные — ЭПС, комплекс (аппарат) Гольджи, лизосомы и вакуоли
  • Двумембранные — ядро, пластиды, митохондрии

Прежде чем говорить об органоидах клетки, без которых невозможна ее жизнедеятельность, необходимо упомянуть о том, без чего вообще не существует клетки — о клеточной мембране. Клеточная мембрана ограничивает клетку от окружающего мира и формирует ее внутреннюю среду.

Клеточная мембрана (оболочка)

Запомните, что в отличие от клеточной стенки, которая есть только у растительных клеток и у клеток грибов (она придает им плотную, жесткую форму) клеточная мембрана есть у всех клеток без исключения! Этот важный момент объясню еще раз 🙂 У клеток животных имеется только клеточная мембрана, а у клеток растений и грибов есть и клеточная стенка, и клеточная мембрана.

Клеточная мембрана представляет собой билипидный слой (лат. bi — двойной + греч. lipos — жир), который пронизывают молекулы белков.

Билипидный слой представлен двумя слоями фосфолипидов. Обратите внимание, что их гидрофобные концы обращены внутрь мембраны, а гидрофильные «головки» смотрят наружу. Билипидный слой насквозь пронизывают интегральные белки, частично — погруженные белки, имеются также поверхностно лежащие белки — периферические.

Белки принимают участие в:

  • Поддержании постоянства структуры мембраны
  • Рецепции сигналов из окружающей среды (химического раздражения)
  • Транспорте веществ через мембрану
  • Ускорении (катализе) реакций, которые ассоциированы с мембраной

Интегральные (пронизывающие) белки образуют каналы, по которым молекулы различных веществ могут поступать в клетку или удаляться из нее. «Заякоренные» молекулы олигосахаридов на поверхности клетки образуют гликокаликс, который выполняет рецепторную функцию, участвует в избирательном транспорте веществ через мембрану.

Теперь вы знаете, что гликокаликс — надмембранный комплекс, совокупность клеточных рецепторов, которые нужны клетке для восприятия регуляторных сигналов биологически активных веществ (гормонов, гормоноподобных веществ). Гормон избирателен, специфичен и присоединяется только к своему рецептору: меняется конформация молекулы рецептора и обмен веществ в клетке. Так гормоны регулируют жизнедеятельность клеток.

Вирусы и бактерии не являются исключением: они взаимодействуют только с теми клетками, на которых есть подходящие к ним рецепторы. Так вирус гриппа поражает преимущественно клетки слизистой верхних дыхательных путей. Однако если рецепторов нет, то вирус не может проникнуть в клетку, и организм приобретает невосприимчивость к инфекции. Вспомните врожденный иммунитет: именно по причине отсутствия рецепторов человек не восприимчив ко многим болезням животных.

Итак, вернемся к клеточной мембране. Ее можно сравнить со стенами помещения, в котором, вероятно, вы находитесь. Стены дома защищают его от ветра, дождя, снега и прочих факторов внешней среды. Рискну предположить, что в вашем доме есть окна и двери, которые по мере необходимости открываются и закрываются 🙂 Так и клеточная мембрана может сообщать внутреннюю среду клетки с внешней средой: через мембрану вещества поступают в клетку и удаляются из нее.

Подведем итоги. Клеточная мембрана выполняет ряд важнейших функций:

  • Разделительная (барьерная) — образует барьер между внешней средой и внутренней средой клетки (цитоплазмой с органоидами)
  • Поддержание обмена веществ между внешней средой и цитоплазмой
  • Через мембрану по каналам кислород и питательные вещества поступают в клетку, а продукты жизнедеятельности — мочевина — удаляются из клетки во внешнюю среду.

  • Транспортная
  • Тесно связана с обменом веществ, однако здесь мне особенно хочется подчеркнуть варианты транспорта веществ через клетку. Выделяется два вида транспорта:

    • Пассивный — часто идет по градиенту концентрации, без затрат АТФ (энергии). Возможен путем осмоса, простой диффузии или облегченной (с участием белка-переносчика) диффузии.
    • Внутрь клетки с помощью осмоса поступает вода. Путем простой диффузии в клетку попадают O2, H2O, CO2, мочевина. Облегченная диффузия характерна для транспорта глюкозы, аминокислот.

    • Активный
    • Активный транспорт чаще происходит против градиента концентрации, в ходе него используются белки-переносчики и энергия АТФ. Ярким примером является натрий-калиевый насос, который накачивает ионы калия внутрь клетки, а ионы натрия выводит наружу. Это происходит против градиента концентрации, поэтому без затрат энергии (АТФ) не обойтись.

Внутрь клетки крупные молекулы попадают путем эндоцитоза (греч. endo — внутрь) двумя путями:

  • Фагоцитоз (греч. phago — ем + cytos — клетка) — поглощение твердых пищевых частиц и бактерий фагоцитами
  • Пиноцитоз (греч. pino — пью) — поглощение клеткой жидкости, захват жидкости клеточной поверхностью

Фагоцитоз был открыт И.И. Мечниковым, который создал фагоцитарную теорию иммунитета. Это теория гласит, что в основе иммунной системы нашего организма лежит явление фагоцитоза: попавшие в организм бактерии уничтожаются фагоцитами (T-лимфоцитами), которые переваривают их.

В ходе эндоцитоза мембрана сильно прогибается внутрь клетки, ее края смыкаются, захватывая бактерию, пищевые частицы или жидкость внутрь клетки. Образуется везикула (пузырек), который движется к пищеварительной вакуоли или лизосоме, где происходит внутриклеточное пищеварение.

Клетки многих органов, к частности эндокринных желез, которые выделяют в кровь гормоны, транспортируют синтезированные вещества к мембране и удаляют их из клетки с помощью экзоцитоза (от др.-греч. ἔξω — вне, снаружи). Таким образом, процессы экзоцитоза и эндоцитоза противоположны.

Клеточная стенка

Расположена снаружи клеточной мембраны. Присутствует только в клетках бактерий, растений и грибов, у животных отсутствует. Придает клетке определенную форму, направляет ее рост, придавая характерное строение всему организму. Клеточная стенка бактерий состоит из полимера муреина, у грибов — из хитина, у растений — из целлюлозы.

Цитоплазма

Органоиды клетки расположены в цитоплазме, которая состоит из воды, питательных веществ и продуктов обмена. В цитоплазме происходит постоянный ток веществ: поступившие в клетку вещества для расщепления необходимо доставить к органоидам, а побочные продукты — удалить из клетки.

Постоянное движение цитоплазмы поддерживает связь между органоидами клетки и обеспечивает ее целостность.

Прокариоты и эукариоты

Прокариоты (греч. πρό — перед и κάρυον — ядро) или доядерные — одноклеточные организмы, не обладающие в отличие от эукариот оформленным ядром и мембранными органоидами. У прокариот могут обнаруживаться только немембранные органоиды. Их генетический материал представлен в виде кольцевой молекулы ДНК — нуклеоида. К прокариотам относятся бактерии (в их числе цианобактерии), археи.

Эукариоты (греч. εὖ — хорошо + κάρυον — ядро) или ядерные — домен живых организмов, клетки которых содержат оформленное ядро. Растения, животные, грибы — относятся к эукариотам.

Немембранные органоиды
  • Рибосома
  • Очень мелкая органелла (около 20 нм), которая была открыта после появления электронного микроскопа. Состоит из двух субъединиц: большой и малой, в состав которых входят белки и рРНК (рибосомальная РНК), синтезируемая в ядрышке.

    Запомните ассоциацию: «Рибосома — фабрика белка». Именно здесь в ходе матричного биосинтеза — трансляции, с которой подробнее мы познакомимся в следующих статьях, на базе иРНК (информационной РНК) синтезируется белок — последовательность соединенных аминокислот в заданном иРНК порядке.

  • Микротрубочки и микрофиламенты
  • Микротрубочки являются внутриклеточными белковыми производными, входящими в состав цитоскелета. Они поддерживают определенную форму клетки, участвуют в процессе деления путем образования нитей веретена деления. Микротрубочки также образуют основу органоидов движения: жгутиков и ресничек.

    Микрофиламенты — тонкие длинные нитевидные структуры, состоящие из белка актина. Встречаются во всей цитоплазме, служат для создания тока цитоплазмы, принимают участие в движении клетки, в процессах эндо- и экзоцитоза.

  • Клеточный центр (центросома, от греч. soma — тело)
  • Этот органоид характерен только для животной клетки, в клетках грибов и высших растений отсутствует. Клеточный центр состоит из 9 триплетов микротрубочек (триплет — три соединенных вместе). Участвует в образовании нитей веретена деления, располагается на полюсах клетки.

  • Реснички и жгутики
  • Это органоиды движения, которые выступают над поверхностью клетки и имеют в основе пучок микротрубочек. Реснички встречаются только в клетках животных, жгутики можно обнаружить у животных, растений и бактерий.

Одномембранные органоиды
  • Эндоплазматическая сеть (ЭПС), эндоплазматический ретикулум (лат. reticulum — сеть)
  • ЭПС представляет собой систему мембран, пронизывающих всю клетку и разделяющих ее на отдельные изолированные части (компартменты). Это крайне важно, так как в разных частях клетки идут реакции, которые могут помешать друг другу, что нарушит процессы жизнедеятельности.

    Выделяют гладкую ЭПС и шероховатую ЭПС. Обе они выполняют функцию внутриклеточного транспорта веществ, однако между ними имеются различия. На мембранах гладкой ЭПС происходит синтез липидов, обезвреживаются вредные вещества. Шероховатая ЭПС синтезирует белок, так как имеет на мембранах многочисленные рибосомы (потому и называется шероховатой).

  • Комплекс (аппарат) Гольджи
  • Комплекс Гольджи состоит из трубочек, сети уплощенных канальцев (цистерн) и связанных с ними пузырьков. Располагается вокруг ядра клетки, внешне напоминает стопку блинов. Это — «клеточный склад». В нем запасаются жиры и углеводы, с которыми здесь происходят химические видоизменения.

    Модифицированные вещества упаковываются в пузырьки и могут перемещаться к мембране клетки, соединяясь с ней, они изливают свое содержимое во внешнюю среду. Можно догадаться, что комплекс Гольджи хорошо развит в клетках эндокринных желез, которые в большом количестве синтезируют и выделяют в кровь гормоны.

    В комплексе Гольджи появляются первичные лизосомы, которые содержат ферменты в неактивном состоянии.

  • Лизосома (греч. lisis — растворение + soma — тело)
  • Представляет собой мембранный пузырек, содержащий внутри ферменты (энзимы) — липазы, протеазы, фосфатазы. Лизосому можно ассоциировать с «клеточным желудком».

    Лизосома участвует во внутриклеточном пищеварении поступивших в клетку веществ. Сливаясь с фагосомой, первичная лизосома превращается во вторичную, ферменты активируются. После расщепления веществ образуется остаточное тельце — вторичная лизосома с непереваренными остатками, которые удаляются из клетки.

    Лизосома может переварить содержимое фагосомы (самое безобидное), переварить часть клетки или всю клетку целиком. В норме у каждой клетки жизненный цикл заканчивается апоптозом — запрограммированным процессом клеточной гибели.

    В ходе апоптоза ферменты лизосомы изливаются внутрь клетки, ее содержимое переваривается. Предполагают, что нарушение апоптоза в раковых клетках ведет к бесконтрольному росту опухоли.

  • Пероксисомы (лат. per — сверх, греч. oxys — кислый и soma — тело)
  • Пероксисомы (микротельца) содержат окислительно-восстановительные ферменты, которые разлагают H2O2 (пероксид водорода) на воду и кислород. Если бы пероксид водорода оставался неразрушенными, это приводило бы к серьезным повреждениям клетки.

  • Вакуоли
  • Вакуоли характерны для растительных клеток, однако встречаются и у животных (у одноклеточных — сократительные вакуоли). У растений вакуоли выполняют другие функции и имеют иное строение: они заполняются клеточным соком, в котором содержится запас питательных веществ. Снаружи вакуоль окружена тонопластом.

    Трудно переоценить значение вакуолей в жизнедеятельности растительной клетки. Вакуоли создают осмотическое давление, придают клетке форму.

    Примечательно, что по размеру вакуолей можно судить о возрасте клетки: молодые клетки имеют вакуоли небольшого размера, а в старых клетках вакуоли могут настолько увеличиваться, что оттесняют ядро и остальные органоиды на периферию.

Двумембранные органоиды
  • Ядро («ядро» по лат. — nucleus, по греч. — karyon)
  • Важнейший компонент эукариотической клетки — оформленное ядро, которое у прокариот отсутствует. Внутренняя часть ядра представлена кариоплазмой, в которой расположен хроматин — комплекс ДНК, РНК и белков, и одно или несколько ядрышек.

    Ядрышко — место в ядре, где активно идет процесс матричного биосинтеза — транскрипция, с которым мы познакомимся подробнее в следующих статьях. В течение дня, наблюдая за одной и той же клеткой, можно увидеть разное количество ядрышек или не найти ни одного.

    Оболочка ядра состоит из двух мембран и пронизана большим количеством ядерных пор, через которые происходит сообщение между кариоплазмой и цитоплазмой. Главными функциями ядра является хранение, защита и передача наследственного материала дочерним клеткам.

    Замечу, что хромосомы видны только в момент деления клетки. Хромосомы представляют собой сильно спирализованные молекулы ДНК, связанные с белками.

    Я всегда рекомендую ученикам ассоциировать хромосому с мотком ниток: если все нитки обмотать вокруг одной оси, то они становятся мотком и хорошо видны (хромосомы — во время деления, спирализованное ДНК), если же клетка не делится, то нитки размотаны и разбросаны в один слой, хромосом не видно (хроматин — деспирализованное ДНК).

    Хромосомы отличаются друг от друга по строению, форме, размерам. Совокупность всех признаков (форма, число, размер) хромосом называется кариотип. Кариотип может быть представлен по-разному: существует кариотип вида, особи, клетки.

    Изучая кариотип человека, врач-генетик может обнаружить различные наследственные заболевания, к примеру, синдром Дауна — трисомия по 21-ой паре хромосом (должно быть 2 хромосомы, однако при синдроме Дауна их три).

  • Митохондрия
  • Органоид палочковидной формы. Митохондрию можно сравнить с «энергетической станцией». Если в цитоплазме происходит анаэробный этап дыхания (бескислородный), то в митохондрии идет более совершенный — аэробный этап (кислородный). В результате кислородного этапа (цикла Кребса) из двух молекул пировиноградной кислоты (образовавшихся из 1 глюкозы) получаются 36 молекул АТФ.

    Митохондрия окружена двумя мембранами. Внутренняя ее мембрана образует выпячивания внутрь — кристы, на которых имеется большое скопление окислительных ферментов, участвующих в кислородном этапе дыхания. Внутри митохондрия заполнена матриксом.

    Запомните, что особенностью этого органоида является наличие кольцевой молекулы ДНК — нуклеоида, и рибосом. То есть митохондрия обладает собственным генетическим материалом и возможностью синтеза белка, почти как отдельный организм.

    В связи с этим, митохондрия считается полуавтономным органоидом. Вероятнее всего, изначально митохондрии были самостоятельными организмами, однако со временем вступили в симбиоз с эукариотами и стали частью клетки.

    Митохондрий особенно много в клетках мышц, в том числе — в сердечной мышечной ткани. Эти клетки выполняют активную работу и нуждаются в большом количестве энергии.

  • Пластиды (др.-греч. πλαστός — вылепленный)
  • Двумембранные органоиды, встречающиеся только в клетках высших растений, водорослей и некоторых простейших. У подавляющего большинства животных пластиды отсутствуют. Подразделяются на три типа:

    • Хлоропласт (греч. chlōros — зелёный)
    • Получил свое название за счет содержащегося в нем зеленого пигмента — хлорофилла (греч. chloros — зеленый и phyllon — лист). Под двойной мембраной расположены тилакоиды, которые собраны в стопки — граны. Внутреннее пространство между тилакоидами и мембраной называется стромой.

      Запомните, что светозависимая (световая) фаза фотосинтеза происходит на мембранах тилакоидов, а темновая (светонезависимая) фаза — в строме хлоропласта за счет цикла Кальвина. Это очень пригодится при изучении фотосинтеза в дальнейшем.

      Так же, как и митохондрии, пластиды относятся к полуавтономным органоидам: в них имеется кольцевидная ДНК — нуклеоид, рибосомы.

    • Хромопласты (греч. chromos – краска)
    • Пластиды, которые содержат пигменты каратиноиды в различных сочетаниях. Сочетание пигментов обуславливает красную, оранжевую или желтую окраску. Находятся в плодах, листьях, лепестках цветков.

      Хромопласты могут развиваться из хлоропластов: во время созревания плодов хлоропласты теряют хлорофилл и крахмал, в них активируется биосинтез каротиноидов.

    • Лейкопласты (др.-греч. λευκός — белый )
    • Не содержат пигментов, образуются в запасающих частях растения (клубни, корневища). В лейкопластах накапливается крахмал, липиды (жиры), пептиды (белки). На свету лейкопласты могут превращаться в хлоропласты и запускать процесс фотосинтеза.

©Беллевич Юрий Сергеевич

Данная статья является интеллектуальной собственностью Беллевича Юрия Сергеевича. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

studarium.ru

Клетка

На заре развития жизни на Земле все клеточные формы были представлены бактериями. Они всасывали органические вещества, растворённые в первичном океане, через поверхность тела.

Со временем некоторые бактерии приспособились производить органические вещества из неорганических. Для этого они использовали энергию солнечного света. Возникла первая экологическая система, в которой эти организмы были производителями. В результате этого в атмосфере Земли появился кислород, выделяемый этими организмами. С его помощью можно из той же самой пищи получить гораздо больше энергии, а добавочную энергию использовать на усложнение строения тела: разделение тела на части.

Одно из важных достижений жизни — разделение ядра и цитоплазмы. В ядре находится наследственная информация. Специальная мембрана вокруг ядра позволила защитить от случайных повреждений. По мере необходимости цитоплазма получает из ядра команды, направляющие жизнедеятельность и развитие клетки.

Организмы, у которых ядро отделено от цитоплазмы, образовали надцарство ядерных (к ним относятся — растения, грибы, животные).

Таким образом, клетка — основа организации растений и животных — возникла и развилась в ходе биологической эволюции.

Даже не вооружённым глазом, а ещё лучше под лупой можно видеть, что мякоть зрелого арбуза состоит из очень мелких крупинок, или зёрнышек. Это клетки — мельчайшие «кирпичики», из которых состоят тела всех живых организмов, в том числе и растительных.

Жизнь растения осуществляется соединённой деятельностью его клеток, создающих единое целое. При многоклеточности частей растения существует физиологическое разграничение их функций, специализация различных клеток в зависимости от местоположения их в теле растения.

Растительная клетка отличается от животной тем, что имеет плотную оболочку, покрывающую внутреннее содержимое со всех сторон. Клетка не является плоской (как её принято изображать), она скорей всего похожа на очень маленький пузырёк, наполненный слизистым содержимым.

Рассмотрим клетку как структурно-функциональную единицу организма. Снаружи клетка покрыта плотной клеточной стенкой, в которой имеются более тонкие участки — поры. Под ней находится очень тонкая плёнка — мембрана, покрывающая содержимое клетки — цитоплазму. В цитоплазме есть полости — вакуоли, заполненные клеточным соком. В центре клетки или около клеточной стенки расположено плотное тельце — ядро с ядрышком. От цитоплазмы ядро отделено ядерной оболочкой. По всей цитоплазме распределены мелкие тельца — пластиды.

Живая часть клетки — это ограниченная мембраной, упорядоченная, структурированная система биополимеров и внутренних мембранных структур, участвующих в совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Важной особенностью является то, что в клетке нет открытых мембран со свободными концами. Клеточные мембраны всегда ограничивают полости или участки, закрывая их со всех сторон.

Современная обобщенная схема растительной клетки

Плазмалемма (наружная клеточная мембрана) — ультрамикроскопическая плёнка толщиной 7,5 нм., состоящая из белков, фосфолипидов и воды. Это очень эластичная плёнка, хорошо смачивающаяся водой и быстро восстанавливающая целостность после повреждения. Имеет универсальное строение, т.е.типичное для всех биологических мембран. У растительных клеток снаружи от клеточной мембраны находится прочная, создающая внешнюю опору и поддерживающая форму клетки клеточная стенка. Она состоит из клетчатки (целлюлозы) — нерастворимого в воде полисахарида.

Плазмодесмы растительной клетки, представляют собой субмикроскопические канальцы, пронизывающие оболочки и выстланные плазматической мембраной, которая таким образом переходит из одной клетки в другую, не прерываясь. С их помощью происходит межклеточная циркуляция растворов, содержащих органические питательные вещества. По ним же идёт передача биопотенциалов и другой информации.

Порами называют отверстия во вторичной оболочке, где клетки разделяют лишь первичная оболочка и срединная пластинка. Участки первичной оболочки и срединную пластинку, разделяющие соседствующие поры смежных клеток, называют поровой мембраной или замыкающей пленкой поры. Замыкающую пленку поры пронизывают плазмодесменные канальцы, но сквозного отверстия в порах обычно не образуется. Поры облегчают транспорт воды и растворенных веществ от клетки к клетке. В стенках соседних клеток, как правило, одна против другой, образуются поры.

Клеточная оболочка имеет хорошо выраженную, относительно толстую оболочку полисахаридной природы. Оболочка растительной клетки продукт деятельности цитоплазмы. В её образовании активное участие принимает аппарат Гольджи и эндоплазматическая сеть.

Строение клеточной мембраны

Основу цитоплазмы составляет ее матрикс, или гиалоплазма, — сложная бесцветная, оптически прозрачная коллоидная система, способная к обратимым переходам из золя в гель. Важнейшая роль гиалоплазмы заключается в объединении всех клеточных структур в единую систему и обеспечении взаимодействия между ними в процессах клеточного метаболизма.

Гиалоплазма (или матрикс цитоплазмы) составляет внутреннюю среду клетки. Состоит из воды и различных биополимеров (белков, нуклеиновых кислот, полисахаридов, липидов), из которых основную часть составляют белки различной химической и функциональной специфичности. В гиалоплазме содержатся также аминокислоты, моносахара, нуклеотиды и другие низкомолекулярные вещества.

Биополимеры образуют с водой коллоидную среду, которая в зависимости от условий может быть плотной (в форме геля) или более жидкой (в форме золя), как во всей цитоплазме, так и в отдельных ее участках. В гиалоплазме локализуются и взаимодействуют между собой и средой гиалоплазмы различные органеллы и включения. При этом расположение их чаще всего специфично для определенных типов клеток. Через билипидную мембрану гиалоплазма взаимодействует с внеклеточной средой. Следовательно, гиалоплазма является динамической средой и играет важную роль в функционировании отдельных органелл и жизнедеятельности клеток в целом.

Цитоплазматические образования – органеллы

Органеллы (органоиды) — структурные компоненты цитоплазмы. Они имеют определённую форму и размеры, являются обязательными цитоплазматическими структурами клетки. При их отсутствии или повреждении клетка обычно теряет способность к дальнейшему существованию. Многие из органоидов способны к делению и самовоспроизведению. Размеры их настолько малы, что их можно видеть только в электронный микроскоп.

Ядро

Ядро — самая заметная и обычно самая крупная органелла клетки. Оно впервые было подробно исследовано Робертом Броуном в 1831 году. Ядро обеспечивает важнейшие метаболические и генетические функции клетки. По форме оно достаточно изменчиво: может быть шаровидным, овальным, лопастным, линзовидным.

Ядро играет значительную роль в жизни клетки. Клетка, из которой удалили ядро, не выделяет более оболочку, перестаёт расти и синтезировать вещества. В ней усиливаются продукты распада и разрушения, вследствие этого она быстро погибает. Образование нового ядра из цитоплазмы не происходит. Новые ядра образуются только делением или дроблением старого.

Внутреннее содержимое ядра составляет кариолимфа (ядерный сок), заполняющая пространство между структурами ядра. В нём находится одно или несколько ядрышек, а также значительное количество молекул ДНК, соединённых со специфическими белками — гистонами.

Строение ядра

Ядрышко

Ядрышко — как и цитоплазма, содержит преимущественно РНК и специфические белки. Важнейшая его функция заключается в том, что в нём происходит формирование рибосом, которые осуществляют синтез белков в клетке.

Аппарат Гольджи

Аппарат Гольджи — органоид, имеющий универсальное распространение во всех разновидностях эукариотических клеток. Представляет собой многоярусную систему плоских мембранных мешочков, которые по периферии утолщаются и образуют пузырчатые отростки. Он чаще всего расположен вблизи ядра.

Аппарат Гольджи

В состав аппарата Гольджи обязательно входит система мелких пузырьков (везикул), которые отшнуровываются от утолщённых цистерн (диски) и располагаются по периферии этой структуры. Эти пузырьки играют роль внутриклеточной транспортной системы специфических секторных гранул, могут служить источником клеточных лизосом.

Функции аппарата Гольджи состоят также в накоплении, сепарации и выделении за пределы клетки с помощью пузырьков продуктов внутриклеточного синтеза, продуктов распада, токсических веществ. Продукты синтетической деятельности клетки, а также различные вещества, поступающие в клетку из окружающей среды по каналам эндоплазматической сети, транспортируются к аппарату Гольджи, накапливаются в этом органоиде, а затем в виде капелек или зёрен поступают в цитоплазму и либо используются самой клеткой, либо выводятся наружу. В растительных клетках Аппарат Гольджи содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения клеточной оболочки. Предполагают, что он участвует в образовании вакуолей. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.

Лизосомы

Лизосомы представляют собой мелкие пузырьки, ограниченные мембраной основная функция которых — осуществление внутриклеточного пищеварения. Использование лизосомного аппарата происходит при прорастании семени растения (гидролиз запасных питательных веществ).

Строение лизосомы

Микротрубочки

Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.

Строение микротрубочки

Вакуоль

Вакуоль — важнейшая составная часть растительных клеток. Она представляет собой своеобразную полость (резервуар) в массе цитоплазмы, заполненную водным раствором минеральных солей, аминокислот, органических кислот, пигментов, углеводов и отделённую от цитоплазмы вакуолярной мембраной — тонопластом.

Цитоплазма заполняет всю внутреннюю полость только у самых молодых растительных клеток. С ростом клетки существенно изменяется пространственное расположение вначале сплошной массы цитоплазмы: у неё появляются заполненные клеточным соком небольшие вакуоли, и вся масса становится ноздреватой. При дальнейшем росте клетки отдельные вакуоли сливаются, оттесняя к периферии прослойки цитоплазмы, в результате чего в сформированной клетке находится обычно одна большая вакуоль, а цитоплазма со всеми органеллами располагаются около оболочки.

Водорастворимые органические и минеральные соединения вакуолей обусловливают соответствующие осмотические свойства живых клеток. Этот раствор определённой концентрации является своеобразным осмотическим насосом для регулируемого проникновения в клетку и выделения из неё воды, ионов и молекул метаболитов.

В комплексе со слоем цитоплазмы и её мембранами, характеризующимися свойствами полупроницаемости, вакуоль образует эффективную осмотическую систему. Осмотически обусловленными являются такие показатели живых растительных клеток, как осмотический потенциал, сосущая сила и тургорное давление.

Строение вакуоли

Пластиды

Пластиды — самые крупные (после ядра) цитоплазматические органоиды, присущие только клеткам растительных организмов. Они не найдены только у грибов. Пластиды играют важную роль в обмене веществ. Они отделены от цитоплазмы двойной мембранной оболочкой, а некоторые их типы имеют хорошо развитую и упорядоченную систему внутренних мембран. Все пластиды едины по происхождению.

Хлоропласты — наиболее распространённые и наиболее функционально важные пластиды фотоавтотрофных организмов, которые осуществляют фотосинтетические процессы, приводящие в конечном итоге к образованию органических веществ и выделению свободного кислорода. Хлоропласты высших растений имеют сложное внутреннее строение.

Строение хлоропласта

Размеры хлоропластов у разных растений неодинаковы, но в среднем диаметр их составляет 4-6 мкм. Хлоропласты способны передвигаться под влиянием движения цитоплазмы. Кроме того, под воздействием освещения наблюдается активное передвижение хлоропластов амебовидного типа к источнику света.

Хлорофилл — основное вещество хлоропластов. Благодаря хлорофиллу зелёные растения способны использовать световую энергию.

Лейкопласты (бесцветные пластиды) представляют собой чётко обозначенные тельца цитоплазмы. Размеры их несколько меньше, чем размеры хлоропластов. Более и однообразна и их форма, приближающая к сферической.

Строение лейкопласта

Встречаются в клетках эпидермиса, клубнях, корневищах. При освещении очень быстро превращаются в хлоропласты с соответствующим изменением внутренней структуры. Лейкопласты содержат ферменты, с помощью которых из излишков глюкозы, образованной в процессе фотосинтеза, в них синтезируется крахмал, основная масса которого откладывается в запасающих тканях или органах (клубнях, корневищах, семенах) в виде крахмальных зёрен. У некоторых растений в лейкопластах откладываются жиры. Резервная функция лейкопластов изредка проявляется в образовании запасных белков в форме кристаллов или аморфных включений.

Хромопласты в большинстве случаев являются производными хлоропластов, изредка — лейкопластов.

Строение хромопласта

Созревание плодов шиповника, перца, помидоров сопровождается превращением хлоро- или лейкопластов клеток мякоти в каратиноидопласты. Последние содержат преимущественно жёлтые пластидные пигменты — каратиноиды, которые при созревании интенсивно синтезируются в них, образуя окрашенные липидные капли, твёрдые глобулы или кристаллы. Хлорофилл при этом разрушается.

Митохондрии

Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.

Строение митохондрии

Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.

Эндоплазматическая сеть

Эндоплазматическая сеть — сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Открыта в 1945 году английским учёным К. Портером, представляет собой систему мембран, имеющих ультрамикроскопическое строение.

Строение эндоплазматической сети

Вся сеть объединена в единое целое с наружной клеточной мембраной ядерной оболочки. Различают ЭПС гладкую и шероховатую, несущую на себе рибосомы. На мембранах гладкой ЭПС находятся ферментные системы, участвующие в жировом и углеводном обмене. Этот тип мембран преобладает в клетках семян, богатых запасными веществами (белками, углеводами, маслами), рибосомы прикрепляются к мембране гранулярной ЭПС, и во время синтеза белковой молекулы полипептидная цепочка с рибосомами погружается в канал ЭПС. Функции эндоплазматической сети очень разнообразны: транспорт веществ как внутри клетки, так и между соседними клетками; разделение клетки на отдельные секции, в которых одновременно проходят различные физиологические процессы и химические реакции.

Рибосомы

Рибосомы — немембранные клеточные органоиды. Каждая рибосома состоит из двух не одинаковых по размеру частичек и может делиться на два фрагмента, которые продолжают сохранять способность синтезировать белок после объединения в целую рибосому.

Строение рибосомы

Рибосомы синтезируются в ядре, затем покидают его, переходя в цитоплазму, где прикрепляются к наружной поверхности мембран эндоплазматической сети или располагаются свободно. В зависимости от типа синтезируемого белка рибосомы могут функционировать по одиночке или объединяться в комплексы — полирибосомы.

biouroki.ru

Цитоплазма. Биология 10 класс Захаров

  • ГДЗ
  • 1 Класс
    • Математика
    • Английский язык
    • Русский язык
    • Немецкий язык
    • Информатика
    • Природоведение
    • Основы здоровья
    • Музыка
    • Литература
    • Окружающий мир
    • Человек и мир
  • 2 Класс
    • Математика
    • Английский язык
    • Русский язык
    • Немецкий язык
    • Белорусский язык
    • Украинский язык
    • Информатика
    • Природоведение
    • Основы здоровья
    • Музыка
    • Литература
    • Окружающий мир
    • Человек и мир
    • Технология
  • 3 Класс
    • Математика
    • Английский язык
    • Русский язык
    • Немецкий язык
    • Белорусский язык
    • Украинский язык
    • Информатика
    • Музыка
    • Литература
    • Окружающий мир
    • Человек и мир
    • Испанский язык
  • 4 Класс
    • Математика
    • Английский язык
    • Русский язык
    • Немецкий язык
    • Белорусский язык
    • Украинский язык
    • Информатика
    • Основы здоровья

resheba.me

Параграф 11. Методы изучения клетки

  • ГДЗ
  • 1 Класс
    • Математика
    • Английский язык
    • Русский язык
    • Немецкий язык
    • Информатика
    • Природоведение
    • Основы здоровья
    • Музыка
    • Литература
    • Окружающий мир
    • Человек и мир
  • 2 Класс
    • Математика
    • Английский язык
    • Русский язык
    • Немецкий язык
    • Белорусский язык
    • Украинский язык
    • Информатика
    • Природоведение
    • Основы здоровья
    • Музыка
    • Литература
    • Окружающий мир
    • Человек и мир
    • Технология
  • 3 Класс
    • Математика
    • Английский язык
    • Русский язык
    • Немецкий язык
    • Белорусский язык
    • Украинский язык
    • Информатика
    • Музыка
    • Литература
    • Окружающий мир
    • Человек и мир
    • Испанский язык
  • 4 Класс
    • Математика
    • Английский язык
    • Русский язык
    • Немецкий язык
    • Белорусский язык
    • Украинский язык
    • Информатика
    • Основы здоровья
    • Музыка

resheba.me

Сайт учителей биологии МБОУ Лицей № 2 города Воронежа

Органоиды клетки и их функции

Все органоиды клеток делятся на две группы: мембранные и немембранные.

Большинство внутриклеточных структур принадлежит к мембранным органоидам, у которых содержимое отделено от цитоплазмы биологическими мембранами. К ним относятся эндоплазматическая сеть, комплекс Гольджи, митохондрии, лизосомы, пластиды. Митохондрии и пластиды являются двухмембранными органоидами. Немембранными органоидами, которые образованы без участия мембран, являются рибосомы, микротрубочки, клеточный центр. Все названные органоиды имеются в клетках эукариот. В клетках прокариот содержатся лишь рибосомы.

Каждый органоид осуществляет определённые функции, жизненно необходимые для клетки.

Одномембранные органоиды

Эндоплазматическая сеть, или ЭПС (греч. эндон — внутри и плазма — образование) — одномембранный органоид – это сложная система в виде трубочек, мешочков, плоских цистерн разных размеров. Они объединены в единую замкнутую полость и отграничены от содержимого цитоплазмы биологической мембраной, образующей многочисленные складки и изгибы. Из плоских цистерн в клетках растений образуются вакуоли.

Эндоплазматическая сеть разделяет цитоплазму на отдельные отсеки, в которых одновременно могут проходить различные химические процессы, не мешая друг другу. Различают шероховатую и гладкую эндоплазматическую сеть. «Шероховатость» вызвана многочисленными рибосомами, усеивающими поверхность мембран, где происходит процесс синтеза белков в клетке. Гладкая эндоплазматическая сеть синтезирует различные липиды и углеводы. Эндоплазматическая сеть не только синтезирует и накапливает в своих цистернах различные вещества, но и участвует в их внутриклеточной транспортировке.

  

Особенности строения:

  • Сеть полостей, канальцев, трубочек построенных из мембран.
  • 2 типа – гладкая и шероховатая.
  • На мембранах шероховатой ЭПС расположены рибосомы.

Выполняемые функции:

  • Осуществляет синтез органических веществ и их транспорт по клетке.
  • На мембранах гладкой ЭПС синтезируются углеводы и липиды.
  • На мембранах шероховатой ЭПС синтезируются белки.

Комплекс Гольджи (аппарат Гольджи) — одномембранный органоид клетки. Состоит из цистерн, трубчатых структур, вакуолей и транспортных пузырьков. В клетке может быть один комплекс или несколько. Его основная функция – накопление и «упаковка» химических соединений, синтезируемых в клетке. Комплекс Гольджи взаимодействует с эндоплазматической сетью, получая от нее новообразованные белки и другие выделяемые клеткой вещества. В структурах комплекса Гольджи эти вещества накапливаются, сортируются и могут долгое время храниться в цитоплазме как запас, пока клетка их не востребует.

Особенности строения:
  • Замкнутые мембранные полости, трубочки и пузырьки.
  • Связаны с эндоплазматической сетью.

Выполняемые функции:

  • Осуществляет накопление и транспорт органических веществ синтезированных в клетке.
  • Вещества накапливаются в полостях и подвергаются химической модификации.
  • Гормоны и ферменты, способные разрушать органические вещества упаковываются в мембранные пузырьки.
  • Участвует в образовании лизосом.

Лизосома (от греч. lysis – «растворение» и soma – «тело») – округлый одноцветный органоид. Лизосомы наполнены специальными пищеварительными ферментами. Основная функция лизосом – внутриклеточное пищеварение. Продукты переваривания поступают в цитоплазму клетки.

Особенности строения:

  • Замкнутые одномембранные тельца овальной формы.
  • Содержат ферменты.

Выполняемые функции:

  • Участвуют в расщеплении органических веществ поступающих в клетку в результате фагоцитоза и пиноцитоза, образуют пищеварительные вакуоли.
  • Способствуют разрушению отмерших органоидов клетки.
  • Уничтожают отмирающие клетки, и даже органы (утрата хвоста у головастика).

 

Вакуоли — полости в цитоплазме растительных клеток, ограниченные мембраной и заполненные жидкостью — клеточным соком, состав которого отличается от окружающей цитоплазмы. Вакуоль окружена полупроницаемой мембраной — тонопластом. 

 

Одна из важных функций растительных вакуолей — накопление запасных питательных веществ и регуляция водно-солевого обмена, поддержание тургора клетки, т. е. вакуоль контролирует поступление воды в клетку и из клетки. 

 

Во многих зрелых клетках растений они составляют более половины объёма клетки.

 

Особенности строения:

  • Отделяются от цитоплазмы мембраной.
  • Содержат клеточный сок.
  • Могут содержать красящие вещества (пигменты).
  • Как правило, у молодых клеток несколько мелких вакуолей, у старых клеток – одна крупная вакуоль.

Выполняемые функции:

  • Поддержание тургора в клетке.
  • Резервуар воды.
  • В них могут накапливаться питательные вещества и ненужные клетке продукты жизнедеятельности.

Клеточный сок — водянистая жидкость, заполняющая вакуоли, которая содержит органические и неорганические соли, глюкозу, аминокислоты, белки, конечные и токсичные продукты обмена веществ, а также пигменты и катионы калия. Состав клеточного сока специфичен для каждого вида, зависит от условий произрастания и возраста растения.

Основная функция клеточного сока — обеспечение осмоса и тургора клеток (т. е. поддержание упругости тканей и органов).

biolicey2vrn.ru

§11. Методы изучения клетки. Общий план строения клетки

 


 


 

1. Какие организмы относятся к эукариотам? К прокариотам?

Растения, грибы, протисты, бактерии, животные.

К эукариотам относятся растения, грибы, протисты и животные.

К прокариотам относятся бактерии.

 

2. Какие понятия пропущены в биологических «уравнениях» и заменены вопросительными знаками?

Поверхностный аппарат клетки + ? + ядро = эукариотическая клетка

Цитоплазма = органоиды + включения + цитоскелет + ?

Надмембранный комплекс + ? = поверхностный аппарат клетки

В первом «уравнении» вопросительным знаком заменено понятие «цитоплазма», во втором – «гиалоплазма», в третьем – «цитоплазматическая мембрана (плазмалемма)».

 

3. Назовите и охарактеризуйте основные методы изучения клетки.

● Световая микроскопия основана на том, что через прозрачный или полупрозрачный объект исследования проходят лучи света, попадающие затем в систему линз объектива и окуляра. Линзы увеличивают объект исследования. С помощью световых микроскопов была открыта клетка и некоторые её структуры (ядро, клеточная стенка, пластиды, вакуоли).

● Электронная микроскопия даёт возможность детального изучения клеточных структур. Этот метод позволяет увидеть составные компоненты клеток размером до 0,1 нм, например, биологические мембраны (толщина 6–10 нм), рибосомы (диаметр около 20 нм).

● Метод дифференциального (разделительного) центрифугирования применяется для выделения и изучения отдельных компонентов клетки. Разрушенные клетки помещают в центрифугу, где пробирки с клеточным материалом вращаются на очень высокой скорости. Разные клеточные структуры имеют различные массу, размеры и плотность, поэтому под действием центробежной силы в растворах определённых веществ (например, сахарозы или хлорида цезия) они оседают с разной скоростью и останавливаются в определённом слое жидкости, что даёт возможность отделить одни компоненты клетки от других.

● Методы цитохимии и гистохимии используются для изучения локализации отдельных химических веществ в клетках. Эти методы основаны на избирательном действии реактивов и красителей на определённые химические вещества, содержащиеся в той или иной клеточной структуре.

● Метод авторадиографии позволяет проследить за каким-либо химическим веществом в клетке. Для этого в молекулы вещества вводят радиоактивную метку (заменяют один из атомов на радионуклид), а затем устанавливают локализацию вещества с помощью счётчика радиоактивных частиц или по засвечиванию фотоплёнки.

● Метод рентгеноструктурного анализа даёт возможность определять пространственное расположение атомов и их группировок в молекулах (например, ДНК, белков), входящих в состав клеточных структур.

● Метод клеточных культур представляет собой выращивание клеток многоклеточных организмов на питательных средах в контролируемых условиях и используется для изучения процессов деления клеток, их дифференцировки и специализации.

● Методы микрохирургии (удаление отдельных клеточных компонентов, их пересаживание из одних клеток в другие, микроинъекции различных веществ и т. д.) применяется для исследования живых клеток, выяснения функций отдельных органоидов и др.

● Замедленная кино- или видеосъёмка через мощные световые микроскопы позволяет проследить за процессами, происходящими в живой клетке в течение длительного времени.

 

4. Каков общий принцип строения клеток? О чём свидетельствует тот факт, что клетки различных организмов имеют общий план строения?

Клетка состоит из трёх основных частей: поверхностного аппарата, цитоплазмы и ядра (только у эукариот).

Проверхностный аппарат представлен цитоплазматической мембраной и надмембранным комплексом. Цитоплазма включает гиалоплазму (внутреннюю среду клетки) и погружённые в неё цитоскелет, органоиды и включения. Ядро содержит ДНК, обеспечивая хранение и реализацию наследственной информации, а также её передачу дочерним клеткам.

Единый план строения клеток свидетельствует о родстве живых организмов, общности их происхождения.

 

5. Как устроен поверхностный аппарат клеток?

Поверхностный аппарат клеток образован цитоплазматической мембраной (плазмалеммой) и надмембранным комплексом. Поверхностный аппарат ограничивает внутреннее содержимое клеток, защищает его от внешних воздействий, осуществляет обмен веществ между клеткой и внеклеточной средой. Надмембранный комплекс клеток растений, грибов и многих протистов представлен плотной, часто многослойной, разнообразной по строению клеточной стенкой (оболочкой).

Примечание: Надмембранный комплекс животных клеток представлен гликокаликсом (этот материал будет рассмотрен в §12).

 

6. Чем органоиды отличаются от включений? В клетках каких тканей и органов растений содержится больше всего включений?

Органоиды – постоянные структуры цитоплазмы, т.е. они всегда присутствуют в клетке. Включения – непостоянные внутриклеточные образования, которые могут появляться в процессе жизнедеятельности, исчезать и вновь образовываться. Много включений содержат клетки запасающей паренхимы растений. Эта ткань хорошо развита в семенах, сочных плодах, корневищах, клубнях и луковицах.

 

7. Подберите методы, подходящие для каждого цитологического исследования. Объясните свой выбор.

а) Определение толщины цитоплазматической мембраны клетки.

б) Выделение из нейронов ядер и их сбор в отдельную пробирку для дальнейшего изучения.

в) Подсчёт числа лейкопластов (бесцветных пластид) в клетках клубня картофеля.

г) Определение формы молекулы белка и построение её объемного изображения.

д) Размножение в лаборатории лейкоцитов человека и определение, смогут ли они выполнять свои функции без ядра.

е) Подсчёт числа эритроцитов в 1 мм3 крови человека.

а) Электронная микроскопия, т.к. цитоплазматическая мембрана очень тонкая и увидеть её в световой микроскоп невозможно.

б) Дифференциальное центрифугирование, поскольку именно этот метод используется для выделения отдельных компонентов клеток.

в) Световая микроскопия в сочетании с окрашиванием (методами цито- и гистохимии). Лейкопласты – достаточно крупные органоиды. Однако они бесцветные и для того, чтобы хорошо различать лейкопласты под световым микроскопом, необходимо окрашивание.

г) Рентгеноструктурный анализ. Крупные белковые молекулы можно увидеть под электронным микроскопом, однако для детального изучения формы молекулы, выяснения её пространственной конфигурации и построения объёмного изображения больше подходит метод рентгеноструктурного анализа.

д) Размножить лейкоциты можно с помощью метода клеточных культур. Для выяснения того, смогут ли они выполнять свои функции без ядра, нужно удалить ядро, т.е. осуществить оперативное воздействие на клетку (микрохирургия).

е) Световая микроскопия, причём окрашивание проводить не обязательно, т.к. красные кровяные тельца будут достаточно хорошо различимы под микроскопом.

 

8*. В связи с чем некоторые клетки достигают сравнительно крупных размеров (яйцеклетки птиц и акул, клетки мякоти плодов и эндосперма семян, нейроны с отростками более 1 м)? Есть ли пределы увеличению (уменьшению) размеров клеток? Чем они обусловлены?

Потребности клетки в питательных веществах и кислороде, в выведении конечных продуктов обмена зависят от её объёма, а интенсивность транспорта веществ в клетку и из неё – от площади поверхности. Увеличение размеров клеток сопровождается отставанием интенсивности транспорта веществ (пропорциональна квадрату линейного размера) от потребностей клеток (пропорциональны кубу линейного размера). Следовательно, увеличение размеров приводило бы к замедлению процессов жизнедеятельности и в конечном итоге – к гибели клеток.

Поэтому крупных размеров могут достигать, например, те клетки, которые не принимают активного участия в метаболизме, а служат хранилищами запасных веществ (яйцеклетки, клетки мякоти плодов, эндосперма семян и т. п.) или клетки, имеющие отростки (нейроны), поскольку это увеличивает площадь поверхности.

Уменьшение размеров клеток также имеет предел. Любая клетка должна иметь объём, достаточный для содержания хотя бы минимального количества нуклеиновых кислот, ферментов и других макромолекул, необходимых для поддержания жизнедеятельности и для размножения. Самые мелкие из известных клеток имеют диаметр 0,1-0,15 мкм (микоплазмы). Учёные подсчитали, что в такой клетке может содержаться порядка 1200 молекул белка и осуществляться около 100 ферментативных реакций.

* Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.

Дашков М.Л.

Сайт: dashkov.by

Вернуться к оглавлению

 



 


< Предыдущая   Следующая >

dashkov.by

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *