Индикаторы химия таблица – Индикаторы. Кислотно-основные индикаторы. Изменение окраски в зависимости от рН (кислотности среды)
Индикаторы. Кислотно-основные индикаторы. Изменение окраски в зависимости от рН (кислотности среды)
Изменение окраски индикаторов в зависимости от pH
Кислотно-основные индикаторы — это соединения, окраска которых меняется в зависимости от кислотности среды.
Например, лакмус в кислой среде окрашен в красный цвет, а в щелочной — в синий. Это свойство можно использовать для быстрой оценки pH растворов.
Кислотно-основные индикаторы находят широкое применение в химии. Известно, например, что многие реакции по-разному протекают в кислой и щелочной средах. Регулируя pH, можно изменить направление реакции. Индикаторы можно использовать не только для качественной, но и для количественной оценки содержания кислоты в растворе (метод кислотно-основного титрования).
Применение индикаторов не ограничивается «чистой» химией. Кислотность среды необходимо контролировать во многих производственных процессах, при оценке качества пищевых продуктов, в медицине и т. д.
В таблице 1 указаны наиболее «популярные» индикаторы и отмечена их окраска в нейтральной, кислой и щелочной средах.
Таблица 1
Кислая среда | Нейтральная среда | Щелочная среда | |
Лакмус | Красный | Фиолетовый | Синий |
Метилоранж | Красный | Оранжевый | Желтый |
Фенолфталеин | Бесцветный | Бесцветный | Малиновый |
Лакмус
Метилоранж
Фенолфталеин
В действительности, каждый индикатор характеризуется своим интервалом рН, в котором происходит изменение цвета (интервал перехода). Изменение окраски происходит из-за превращения одной формы индикатора (молекулярной) в другую (ионную). По мере понижения кислотности среды (с ростом рН) концентрация ионной формы повышается, а молекулярной — падает. В таблице 2 перечислены некоторые кислотно-основные индикаторы и соответствующие интервалы перехода.
Таблица 2Название индикатора | Цвет в кислой среде | Интервал перехода (pH) | Цвет в щелочной среде |
Метиловый оранжевый | Красный | 3 — 5 | Желтый |
Метиловый красный | Красный | 4-6 | Желтый |
Бромкрезоловый пурпурный | Желтый | 5,5 — 7,5 | Фиолетовый |
Феноловый красный | Желтый | 7-9 | Красный |
Фенолфталеин | Бесцветный | 8-10 | Малиновый |
Возможно, вам будут интересны следующие материалы:
При проведении химического процесса чрезвычайно важно бывает проследить за условиями протекания реакции или установить достижение ее окончания. Иногда это удается наблюдать по некоторым внешним признакам: прекращению выделения пузырьков газа, изменению окраски раствора, выпадению осадка или, наоборот, переходу в раствор одного из компонентов реакции и т. п. В большинстве же случаев для определения окончания реакции пользуются реактивами вспомогательного действия, так называемыми индикаторами, которые вводят обычно в анализируемый раствор в небольших количествах.
Индикаторами называются химические соединения, способные изменять окраску раствора в зависимости от условий среды, не влияя при этом непосредственно на испытуемый раствор и на направление реакции. Так, кислотно-щелочные индикаторы изменяют окраску в зависимости от pH среды; окислительно-восстановительные индикаторы — от потенциала среды; адсорбционные индикаторы — от степени адсорбции и т. д.
Особенно широко применяют индикаторы в аналитической практике для титриметрического анализа. Они служат также важнейшим инструментом для контроля технологических процессов в химической, металлургической, текстильной, пищевой и других отраслях промышленности. В сельском хозяйстве при помощи индикаторов проводят анализ и классификацию почв, устанавливают характер удобрений и необходимое количество их для внесения в почву.
Различают кислотно-щелочные, флуоресцентные, окислительновосстановительные, адсорбционные и хемилюминесцентные индикаторы.
КИСЛОТНО-ЩЕЛОЧНЫЕ (PH) ИНДИКАТОРЫКак известно из теории электролитической диссоциации, растворенные в воде химические соединения диссоциируют на положительно заряженные ионы — катионы и отрицательно заряженные — анионы. Вода также диссоциирует в очень малой степени на ионы водорода, заряженные положительно, и ионы гидроксила, заряженные отрицательно: Концентрацию водородных ионов в растворе обозначают символом .
Если концентрация водородных и гидроксильных ионов в растворе одинакова, то такие растворы нейтральны и pH = 7. При концентрации водородных ионов, соответствующей pH от 7 до 0, раствор кислый, если же концентрация гидроксильных ионов больше (pH = от 7 до 14), раствор щелочной. Для измерения значения pH пользуются различными методами. Качественно же реакцию раствора можно определить с помощью специальных индикаторов, меняющих свою окраску в зависимости от концентрации водородных ионов. Такими индикаторами являются кислотно-щелочные индикаторы, которые реагируют на изменение pH среды.
Кислотно-щелочные индикаторы в подавляющем большинстве являются красителями или другими органическими соединениями, молекулы которых претерпевают структурные изменения в зависимости от реакции среды. Ими пользуются в титриметрическом анализе при реакциях нейтрализации, а также для колориметрического определения pH.
Если необходимо повысить точность измерения pH, то пользуются смешанными индикаторами. Для этого подбирают два индикатора с близкими интервалами pH перехода окраски, имеющими в этом интервале дополнительные цвета. При помощи такого смешанного индикатора можно проводить определения с точностью до 0,2 единицы pH.
Широко пользуются также универсальными индикаторами, способными многократно изменять окраску в широком диапазоне значений pH. Хотя точность определения такими индикаторами не превышает 1,0 единицы pH, зато они позволяют вести определения в широком интервале pH: от 1,0 до 10,0. Универсальные индикаторы обычно представляют собой комбинацию из четырех — семи двухцветных или одноцветных индикаторов с различными интервалами pH перехода окраски, составленную таким образом, чтобы при изменении pH среды происходило заметное изменение окраски.
Например, выпускаемый промышленностью универсальный индикатор РКС — смесь семи индикаторов: бромкрезолового пурпурового, бромкрезолового зеленого, метилового оранжевого, тро-пеолина 00, фенолфталеина, тимолового синего и бромтимолового синего.
Этот индикатор в зависимости от pH имеет следующую окраску: при pH = 1 — малиновую, pH = 2 — розовато-оранжевую, pH =3 — оранжевую, pH = 4 — желто-оранжевую, pH =5 желтую, pH = 6 — зеленовато-желтую, pH = 7 — желто-зеленую,. РН = 8 — зеленую, pH = 9 — сине-зеленую, pH = 10 — серовато-синюю.
Индивидуальные, смешанные и универсальные кислотно-щелочные индикаторы обычно растворяют в этиловом спирте и по нескольку капель добавляют в испытуемый раствор. По изменению окраски раствора судят о значении pH. Кроме спирторастворимых индикаторов, выпускаются также водорастворимые формы, представляющие собой аммонийные или натриевые соли этих индикаторов.
Во многих случаях удобнее пользоваться не растворами индикаторов, а индикаторными бумажками. Последние готовят следующим образом: фильтровальную бумагу пропускают через стандартный раствор индикатора, отжимают бумагу от избыточного раствора, высушивают, разрезают на узкие полоски и брошюруют в книжечки. Для проведения испытания индикаторную бумажку опускают в испытуемый раствор или одну каплю раствора помещают на полоску индикаторной бумажки и наблюдают изменение ее окраски.
ФЛУОРЕСЦЕНТНЫЕ ИНДИКАТОРЫНекоторые химические соединения при воздействии на них ультрафиолетовых лучей обладают способностью при определенном значении pH вызывать флуоресценцию раствора или изменять ее цвет или оттенок. Этим свойством пользуются для кислотно-щелочного титрования масел, мутных и сильно окрашенных растворов, поскольку обычные индикаторы для этих целей непригодны. Работу с флуоресцентными индикаторами проводят при освещении исследуемого раствора ультрафиолетовым светом.
ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ ИНДИКАТОРЫОкислительно-восстановительные индикаторы — химические соединения, изменяющие окраску раствора в зависимости от значения окислительно-восстановительного потенциала. Они применяются в титриметрических методах анализа, а также в биологических исследованиях для колориметрического определения окислительно-восстановительного потенциала.
АДСОРБЦИОННЫЕ ИНДИКАТОРЫАдсорбционные индикаторы — вещества, в присутствии которых происходит изменение цвета осадка, образующегося при титровании методом осаждения. Изменять цвет осадка при определенном значении pH способны многие кислотно-щелочные индикаторы, некоторые красители и другие химические соединения, что делает их пригодными для использования в качестве адсорбционных индикаторов. ХЕМИЛЮМИНЕСЦЕНТНЫЕ ИНДИКАТОРЫК этой группе индикаторов относятся вещества, способные при определенных значениях pH высвечивать видимым светом. Хемилюминесцентными индикаторами удобно пользоваться при работе с темными жидкостями, поскольку в данном случае в конечной точке титрования возникает свечение.
1 1 51 Индикаторы химических реакций. Типы и описание. | индикаторы, окраска, химия |
abakbot.ru
При проведении химического процесса чрезвычайно важно бывает проследить за условиями протекания реакции или установить достижение ее окончания. Иногда это удается наблюдать по некоторым внешним признакам: прекращению выделения пузырьков газа, изменению окраски раствора, выпадению осадка или, наоборот, переходу в раствор одного из компонентов реакции и т. п. В большинстве же случаев для определения окончания реакции пользуются реактивами вспомогательного действия, так называемыми индикаторами, которые вводят обычно в анализируемый раствор в небольших количествах.
Индикаторами называются химические соединения, способные изменять окраску раствора в зависимости от условий среды, не влияя при этом непосредственно на испытуемый раствор и на направление реакции. Так, кислотно-щелочные индикаторы изменяют окраску в зависимости от pH среды; окислительно-восстановительные индикаторы — от потенциала среды; адсорбционные индикаторы — от степени адсорбции и т. д.
Особенно широко применяют индикаторы в аналитической практике для титриметрического анализа. Они служат также важнейшим инструментом для контроля технологических процессов в химической, металлургической, текстильной, пищевой и других отраслях промышленности. В сельском хозяйстве при помощи индикаторов проводят анализ и классификацию почв, устанавливают характер удобрений и необходимое количество их для внесения в почву.
Различают кислотно-щелочные, флуоресцентные, окислительновосстановительные, адсорбционные и хемилюминесцентные индикаторы.
КИСЛОТНО-ЩЕЛОЧНЫЕ (PH) ИНДИКАТОРЫКак известно из теории электролитической диссоциации, растворенные в воде химические соединения диссоциируют на положительно заряженные ионы — катионы и отрицательно заряженные — анионы. Вода также диссоциирует в очень малой степени на ионы водорода, заряженные положительно, и ионы гидроксила, заряженные отрицательно: Концентрацию водородных ионов в растворе обозначают символом .
Если концентрация водородных и гидроксильных ионов в растворе одинакова, то такие растворы нейтральны и pH = 7. При концентрации водородных ионов, соответствующей pH от 7 до 0, раствор кислый, если же концентрация гидроксильных ионов больше (pH = от 7 до 14), раствор щелочной. Для измерения значения pH пользуются различными методами. Качественно же реакцию раствора можно определить с помощью специальных индикаторов, меняющих свою окраску в зависимости от концентрации водородных ионов. Такими индикаторами являются кислотно-щелочные индикаторы, которые реагируют на изменение pH среды.
Кислотно-щелочные индикаторы в подавляющем большинстве являются красителями или другими органическими соединениями, молекулы которых претерпевают структурные изменения в зависимости от реакции среды. Ими пользуются в титриметрическом анализе при реакциях нейтрализации, а также для колориметрического определения pH.
Если необходимо повысить точность измерения pH, то пользуются смешанными индикаторами. Для этого подбирают два индикатора с близкими интервалами pH перехода окраски, имеющими в этом интервале дополнительные цвета. При помощи такого смешанного индикатора можно проводить определения с точностью до 0,2 единицы pH.
Широко пользуются также универсальными индикаторами, способными многократно изменять окраску в широком диапазоне значений pH. Хотя точность определения такими индикаторами не превышает 1,0 единицы pH, зато они позволяют вести определения в широком интервале pH: от 1,0 до 10,0. Универсальные индикаторы обычно представляют собой комбинацию из четырех — семи двухцветных или одноцветных индикаторов с различными интервалами pH перехода окраски, составленную таким образом, чтобы при изменении pH среды происходило заметное изменение окраски.
Например, выпускаемый промышленностью универсальный индикатор РКС — смесь семи индикаторов: бромкрезолового пурпурового, бромкрезолового зеленого, метилового оранжевого, тро-пеолина 00, фенолфталеина, тимолового синего и бромтимолового синего.
Этот индикатор в зависимости от pH имеет следующую окраску: при pH = 1 — малиновую, pH = 2 — розовато-оранжевую, pH =3 — оранжевую, pH = 4 — желто-оранжевую, pH =5 желтую, pH = 6 — зеленовато-желтую, pH = 7 — желто-зеленую,. РН = 8 — зеленую, pH = 9 — сине-зеленую, pH = 10 — серовато-синюю.
Индивидуальные, смешанные и универсальные кислотно-щелочные индикаторы обычно растворяют в этиловом спирте и по нескольку капель добавляют в испытуемый раствор. По изменению окраски раствора судят о значении pH. Кроме спирторастворимых индикаторов, выпускаются также водорастворимые формы, представляющие собой аммонийные или натриевые соли этих индикаторов.
Во многих случаях удобнее пользоваться не растворами индикаторов, а индикаторными бумажками. Последние готовят следующим образом: фильтровальную бумагу пропускают через стандартный раствор индикатора, отжимают бумагу от избыточного раствора, высушивают, разрезают на узкие полоски и брошюруют в книжечки. Для проведения испытания индикаторную бумажку опускают в испытуемый раствор или одну каплю раствора помещают на полоску индикаторной бумажки и наблюдают изменение ее окраски.
ФЛУОРЕСЦЕНТНЫЕ ИНДИКАТОРЫНекоторые химические соединения при воздействии на них ультрафиолетовых лучей обладают способностью при определенном значении pH вызывать флуоресценцию раствора или изменять ее цвет или оттенок. Этим свойством пользуются для кислотно-щелочного титрования масел, мутных и сильно окрашенных растворов, поскольку обычные индикаторы для этих целей непригодны. Работу с флуоресцентными индикаторами проводят при освещении исследуемого раствора ультрафиолетовым светом.
ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ ИНДИКАТОРЫОкислительно-восстановительные индикаторы — химические соединения, изменяющие окраску раствора в зависимости от значения окислительно-восстановительного потенциала. Они применяются в титриметрических методах анализа, а также в биологических исследованиях для колориметрического определения окислительно-восстановительного потенциала.
АДСОРБЦИОННЫЕ ИНДИКАТОРЫАдсорбционные индикаторы — вещества, в присутствии которых происходит изменение цвета осадка, образующегося при титровании методом осаждения. Изменять цвет осадка при определенном значении pH способны многие кислотно-щелочные индикаторы, некоторые красители и другие химические соединения, что делает их пригодными для использования в качестве адсорбционных индикаторов. ХЕМИЛЮМИНЕСЦЕНТНЫЕ ИНДИКАТОРЫК этой группе индикаторов относятся вещества, способные при определенных значениях pH высвечивать видимым светом. Хемилюминесцентными индикаторами удобно пользоваться при работе с темными жидкостями, поскольку в данном случае в конечной точке титрования возникает свечение.
1 1 51 Индикаторы химических реакций. Типы и описание. | индикаторы, окраска, химия |
abakbot.ru
ИНДИКАТОРЫ в химии — Большая Медицинская Энциклопедия
ИНДИКАТОРЫ в химии (лат. indicator указатель) — вещества, изменяющие свой цвет в присутствии тех или иных химических соединений в исследуемой среде (в растворе, в воздухе, в клетках, в тканях), а также при изменении pH или окислительно-восстановительного потенциала среды; широко применяются в биохимических, клинических и санитарно-гигиенических лабораториях.
И. применяют для определения конца реакции (точки эквивалентности) при титровании, для колориметрического определения величин pH или окислительно-восстановительных потенциалов, для обнаружения различного рода веществ в тех или иных исследуемых объектах. Для всех этих целей И. применяют в виде водных или спиртовых р-ров или в виде индикаторных бумажек, представляющих собой полоски фильтровальной бумаги, пропитанные И.
В зависимости от назначения и механизма действия И. подразделяют на ряд групп.
Кислотно-основные индикаторы представляют собой сложные органические соединения, изменяющие окраску (двухцветные И.) или ее интенсивность (одноцветные И.) в зависимости от pH среды. Двухцветным И. является, напр., лакмоид: в щелочной среде он имеет синюю окраску, а в кислой — красную. Примером одноцветных И. может служить фенолфталеин, бесцветный в кислой среде и малиновый в щелочной.
По теории Оствальда (W. Ostwald) кислотно-основные И. представляют собой слабые органические к-ты или основания, недиссоциированные молекулы которых имеют в р-ре иную окраску, чем образуемые ими анионы и катионы. Фенолфталеин, напр., является слабой к-той, не диссоциированные молекулы к-рой бесцветны, а анионы окрашивают р-ры в малиновый цвет. В р-рах И., представляющие собой слабые к-ты, диссоциируют по уравнению
где НА — не диссоциированные молекулы И., H+ — ионы водорода, а A— — анионы И.
Константа ионизации таких И. равна
Ka = [Н+] • [А—]/[НА] (2)
(квадратными скобками обозначены молярные концентрации соответствующих частиц).
И., представляющие собой слабые основания, диссоциируют по уравнению
где ВОН — не диссоциированные молекулы И., В+ — катионы И., а OH- — гидроксильные ионы.
Константа диссоциации этих И. равна
Kb = [B+]•[OH—]/[BOH] (4)
Из уравнений 2 и 4 следует, что чем больше величина константы диссоциации, тем в большей степени распадаются И. на ионы и тем, следовательно, при более высоких концентрациях ионов H+ (в тех случаях, когда П.— слабая к-та) или ионов OH— (в тех случаях, когда И.— слабое основание) подавляется его диссоциация и происходит изменение окраски. Разные И. имеют различную величину Ka и Kb., поэтому они изменяют свою окраску при различных значениях pH среды. Тот интервал значений pH, в к-ром происходит изменение окраски данного И., называют зоной действия или интервалом перехода И. Интервал перехода И. обычно равен величине pK ± 1, где pK равен —lgК. Точкой перехода И. называют то значение pH, при к-ром визуально наиболее отчетливо воспринимается перемена окраски И. Точка перехода приблизительно равна величине рК данного И.
Кислотно-основные И. широко применяют при титровании к-т и щелочей, а также для колориметрического измерения величины pH биол, жидкостей, клеток, тканей и др.
Титрование к-т и щелочей должно быть закончено в момент достижения точки эквивалентности, т. е. в момент, когда к титруемому р-ру к-ты (щелочи) добавлен такой объем титранта, в к-ром содержится эквивалентное количество к-ты (щелочи). Для этого необходимо применять такой И., точка перехода к-рого равна величине pH титруемого р-ра в точке эквивалентности (см. Нейтрализации метод). В табл. перечислены И., наиболее употребляемые при титровании к-т и оснований.
Качественное определение кислотности и щелочности производят с помощью так наз. нейтральных И., точка перехода которых находится практически при pH 7,0. К ним относятся, напр., лакмус, имеющий в кислой среде (pH меньше 7,0) красный, а в щелочной среде (pH больше 7,0) синий цвет; нейтральный красный, окрашивающийся в кислой среде в красный цвет, а в щелочной — в желтый цвет.
Приближенное измерение величины pH среды (с точностью до 0,5— 1,0 ед. pH) обычно производят с помощью универсального (комбинированного) И., представляющего собой смесь нескольких И., интервалы перехода которых близки друг к другу и охватывают широкую область значений pH.
К 0,5 мл испытуемой жидкости добавляют 1—2 капли р-ра универсального И. и появляющуюся при этом окраску сравнивают с прилагаемой цветовой шкалой, на к-рой указаны значения pH, отвечающие различным окраскам И. Применяют также полоски фильтровальной бумаги, пропитанные универсальным И.
Для более точного (0,1—0,5 ед. pH) колориметрического определения величины pH обычно пользуются одноцветными И. ряда динитро- и нитрофенолов, предложенными Михаэлисом (L. Michaelis) и представляющими собой слабые к-ты, изменяющие окраску от бесцветной (в кислой среде) до желтой (в щелочной). С этой же целью пользуются рядом двухцветных И., предложенных Кларком (W. М. Clark) и Лабсом (H. A. Lubs), представляющих собой сульфофталеины. Кислотная и щелочная формы этих И. резко различаются по цвету, в этом состоит их преимущество по сравнению с индикаторами Михаэлиса.
Окислительно-восстановительные, или редоксиндикаторы, представляют собой органические красители, цвет которых в окисленном и восстановленном состоянии различен. Такие И. применяют при оксидиметрическом титровании (см. Оксидиметрия), а также для колориметрического определения величин окислительно-восстановительных потенциалов жидкостей (см. Окислительно-восстановительный потенциал), отдельных клеток и тканей в цитохим, и цитол, лабораториях. Большинство редокс-индикаторов при восстановлении превращается в бесцветные соединения, а при окислении окрашивается. Окисленная и восстановленная формы И. находятся в р-рах в состоянии динамического равновесия:
окисленная форма + ne <-> восстановленная форма, где n — число электронов.
Соотношение между равновесными концентрациями двух форм данного И., а следовательно, и цвет р-ра, в к-ром находится И., зависят от величины окислительно-восстановительного потенциала р-ра. Если величина потенциала р-ра больше нормального окислительно-восстановительного потенциала (Е0) данного редокс-индикатора, то большая часть И. в этом р-ре переходит в окисленную форму (обычно окрашенную), если же окислительно-восстановительный потенциал исследуемой среды меньше Е0, то И. превращается в восстановленную форму (обычно бесцветную). При равенстве значений окислительно-восстановительного потенциала среды и Е0 индикатора концентрации окисленной и восстановленной форм И. равны друг другу. Имея ряд И. с различными значениями Е0, можно по их окраске в данной среде судить о величине окислительно-восстановительного потенциала данной среды. Редокс-индикаторы, предложенные Михаэлисом, имеющие общее название «виологены» и представляющие собой производные гамма- и гамма’-дипиридилов, обладают малой токсичностью и широко применяются для измерения окислительно-восстановительных потенциалов в биол, системах; у этих И. окрашена восстановленная форма.
Нормальный окислительно-восстановительный потенциал виологенов не зависит от величины pH р-ра. Этим они отличаются от других редокс-индикаторов.
Комплексонометрические индикаторы (металлоиндикаторы) представляют собой хорошо растворимые в воде органические красители, способные образовывать с ионами металлов окрашенные комплексные соединения. Эти И. применяются для установления точки эквивалентности при комплексонометрическом титровании (см. Комплексонометрия).
Адсорбционные индикаторы — это органические красители, адсорбирующиеся на поверхности осадков, образующихся при титровании по методу осаждения, и изменяющие свой цвет при достижении точки эквивалентности. Напр., тропеолин 00 при титровании хлоридов р-ром азотнокислого серебра меняет окраску в точке эквивалентности с желтой на розовую.
Хемилюминесцентныe (флюоресцентные) индикаторы — органические соединения (например, люменол, люцегинин, силаксен и др.), обладающие способностью люминесцировать при естественном освещении или при облучении ультрафиолетовым светом. Интенсивность и цвет люминесценции зависят как от величины pH среды, так и от величины ее окислительно-восстановительного потенциала; эти И. применяются при титровании (при нейтрализации и оксидиметрии) сильно окрашенных или мутных жидкостей, когда изменение окраски обычных И. незаметно.
И. используются во многих биохим. методах, применяемых в клин.-биохим. лабораториях. Наиболее употребимыми из них являются бромтимоловый синий (при определении активности фруктозодифосфатальдолазы в сыворотке крови, активности ацетилхолинэстеразы и холинэстеразы в сыворотке крови по А. А. Покровскому, а также активности карбоксилэстеразы в крови по А. А. Покровскому и Л. Г. Пономаревой), бромфеноловый синий (при электрофоретическом разделении различных белков для окраски электрофореграмм наряду с амидочерным и кислотным сине-черным), универсальный И., феноловый красный (при определении активности аспартат- и аланин-аминотрансфераз в сыворотке крови, активности холинэстеразы в сыворотке крови и т. д.), фенолфталеин, нитросиний тетразолий, используемый для качественной и количественной оценки активности различных дегидрогеназ (см. Дегидрогеназы), и др.
См. также Водородный показатель, Колориметрия, Осаждения методы, Титриметрический анализ.
Таблица. Краткая характеристика индикаторов, наиболее часто используемых при титровании кислот и оснований
Название индикатора | Интервал перехода индикатора, в единицах pH | Цвет | |
Кислотная форма индикатора | Щелочная форма индикатора | ||
Тропеолин 00 (дифениламиноазо-n-бензолсульфонат натрия) | 1,3 — 3,2 | Красный | Желтый |
Диметиловый желтый (диметиламиноазобензол) | 2, 9-4,0 | Оранжево-красный | Желтый |
Метиловый оранжевый (диметиламиноазобензолсульфонат натрия) | 3,0-4, 4 | Красный | Желтый |
Метиловый красный (диметиламиноазобензолкарбоновая к-та) | 4,2-6,3 | Красный | Желтый |
Феноловый красный (фенолсульфофталеин) | 6,8 — 8,4 | Желтый | Красный |
Фенолфталеин | 8,2-10,0 | Бесцветный | Малиновый |
Тимолфталеин | 9,8-10,5 | Бесцветный | Синий |
Библиография: Виноградова E. Н. Методы определения концентрации водородных ионов, М., 1956, библиогр.; Индикаторы, под ред. Э. Бишопа и И. Н. Марова, пер. с англ., т. 1—2, М., 1976, библиогр.
В. П. Мишин.
xn--90aw5c.xn--c1avg
Индикаторы — органические соединения, способные изменять цвет в растворе при изменении кислотности (pH). Индикаторы широко используют в титровании в аналитической химии и биохимии. Их преимуществом является дешевизна, быстрота и наглядность исследования. Интервалы перехода цвета индикаторов На рисунке приведены ориентировочные данные о существовании разных цветных форм индикаторов в водных растворах. Таблица значений рН перехода наиболее распространённых индикаторов Приведены распространённые в лабораторной практике кислотно-основные индикаторы в порядке возрастания значений pH[1], вызывающих изменение окраски [2]. Римские цифры в квадратных скобках отвечают номеру перехода окраски (для индикаторов с несколькими точками перехода).
В наличии на складе большой ассортимент индикаторов различной квалификации. Выгодные цены, скидки оптовым покупателям, отгрузка в любой регион РФ, а нашим постоянным клиентам мы всегда предлагаем индивидуальные условия сотрудничества. По всем вопросам обращайтесь в коммерческий отдел нашей компании Мы будем рады видеть Вас клиентами нашей компании. |
minkar.ru
Кислотно-основные индикаторы — это… Что такое Кислотно-основные индикаторы?
Кислотно-основные индикаторы — органические соединения, способные изменять цвет в растворе при изменении кислотности (pH). Индикаторы широко используют в титровании в аналитической химии и биохимии. Их преимуществом является дешевизна, быстрота и наглядность исследования. Однако из-за субъективности определения цвета и невысокой точности индикаторы pH не всегда удобны; поэтому для точного измерения pH используют pH-метры с цифровой индикацией.
Измерение pH с помощью индикаторной бумаги:
Формы применения индикаторов
Индикаторы обычно используют, добавляя несколько капель водного или спиртового раствора, либо немного порошка (например, смесь мурексида с хлоридом натрия) к пробе исследуемого раствора. Так, при титровании, в аликвоту исследуемого раствора добавляют индикатор, и наблюдают за изменениями цвета в точке эквивалентности.
Другой способ применения — использование полосок бумаги, пропитанных раствором индикатора или смеси индикаторов и высушенных (например, «Универсальный индикатор»). Такие полоски выпускают в самых разнообразных вариантах — с нанесенной на них цветной шкалой — эталоном цвета (в том числе для окрашенных или мутных сред), или с напечатанными числовыми значениями рН; для точного измерения в узких диапазонах рН, и для ориентировочного исследования растворов; в рулончиках, коробках и пеналах, или в виде отрывных книжечек.
Современные индикаторные полоски могут быть изготовлены с красителем — индикатором, привитым к целлюлозе или иному полимеру. Это делает их устойчивыми к вымыванию, вплоть до многократного использования.
Кислотно-основные индикаторы (водные растворы)
Интервалы перехода цвета индикаторов
На рисунке приведены ориентировочные данные о существовании разных цветных форм индикаторов в водных растворах.
Более точные сведения (несколько переходов, численное значение pH) см. в следующем разделе.
Таблица значений рН перехода наиболее распространённых индикаторов
Приведены распространённые в лабораторной практике кислотно-основные индикаторы в порядке возрастания значений pH[1], вызывающих изменение окраски [2]. Римские цифры в квадратных скобках отвечают номеру перехода окраски (для индикаторов с несколькими точками перехода).
Индикатор и номер перехода | х[3] | Цвет более кислой формы | Интервал pH и номер перехода | Цвет более щелочной формы | ||
---|---|---|---|---|---|---|
Метиловый фиолетовый | жёлтый | 0,13–0,5 [I] | зелёный | |||
Крезоловый красный [I] | красный | 0,2–1,8 [I] | жёлтый | |||
Метиловый фиолетовый [II] | зелёный | 1,0–1,5 [II] | синий | |||
Тимоловый синий [I] | к | красный | 1,2–2,8 [I] | жёлтый | ||
Тропеолин 00 | o | красный | 1,3–3,2 | жёлтый | ||
Метиловый фиолетовый [III] | синий | 2,0–3,0 [III] | фиолетовый | |||
(Ди)метиловый жёлтый | o | красный | 3,0–4,0 | жёлтый | ||
Бромфеноловый синий | к | жёлтый | 3,0–4,6 | сине-фиолетовый | ||
Конго красный | красный | 3,0–5,2 | синий | |||
Метиловый оранжевый | o | красный | 3,1–(4,0)4,4 | (оранжево-)жёлтый | ||
Бромкрезоловый зелёный | к | жёлтый | 3,8–5,4 | синий | ||
Бромкрезоловый синий | жёлтый | 3,8–5,4 | синий | |||
Лакмоид | к | красный | 4,0–6,4 | синий | ||
Метиловый красный | o | красный | 4,2(4,4)–6,2(6,3) | жёлтый | ||
Хлорфеноловый красный | к | жёлтый | 5,0–6,6 | красный | ||
Лакмус (азолитмин) | красный | 5,0–8,0 (4,5-8,3) | синий | |||
Бромкрезоловый пурпурный | к | жёлтый | 5,2–6,8(6,7) | ярко-красный | ||
Бромтимоловый синий | к | жёлтый | 6,0–7,6 | синий | ||
Нейтральный красный | o | красный | 6,8–8,0 | янтарно-жёлтый | ||
Феноловый красный | о | жёлтый | 6,8–(8,0)8,4 | ярко-красный | ||
Крезоловый красный [II] | к | жёлтый | 7,0(7,2)–8,8 [II] | тёмно-красный | ||
α-Нафтолфталеин | к | жёлто-розовый | 7,3–8,7 | синий | ||
Тимоловый синий [II] | к | жёлтый | 8,0–9,6 [II] | синий | ||
Фенолфталеин[4] [I] | к | бесцветный | 8,2–10,0 [I] | малиново-красный | ||
Тимолфталеин | к | бесцветный | 9,3(9,4)–10,5(10,6) | синий | ||
Ализариновый жёлтый ЖЖ | к | бледно-лимонно-жёлтый | 10,1–12,0 | коричнево-жёлтый | ||
Нильский голубой | синий | 10,1–11,1 | красный | |||
Диазофиолетовый | жёлтый | 10,1–12,0 | фиолетовый | |||
Индигокармин | синий | 11,6–14,0 | жёлтый | |||
Epsilon Blue | оранжевый | 11,6–13,0 | тёмно-фиолетовый |
—
- ↑ Величины в круглых скобках взяты из книги «Краткий справочник химика», сост. В.И.Перельман, М.-Л., „Химия“, 1964.
- ↑ Точное значение рН перехода для большинства индикаторов несколько зависит от ионной силы раствора (I). Так, значение рН перехода, определяемое при I=0,1 (напр., раствор хлоридов натрия или калия) отличается от точки перехода в растворе с I=0,5 или I=0,0025 на 0,15…0,25 единицы рН.
- ↑ *Столбец «х» — характер индикатора: к—кислота, о—основание.
- ↑ Фенолфталеин в сильно щелочной среде обесцвечивается. В среде концентрированной серной кислоты также он даёт красную окраску, обусловленую строением катиона фенолфталеина, хотя и не такую интенсивную. Эти малоизвестные факты могут привести к ошибкам при определении реакции среды.
Универсальный индикатор
Основная статья: Универсальный индикатор
Широко применяются смеси индикаторов, позволяющие определить значение рН растворов в большом диапазоне концентраций (1-10; 0-12). Растворами таких смесей — «универсальных индикаторов» обычно пропитывают полоски «индикаторной бумаги», с помощью которых можно быстро (с точностью до единиц рН, или даже десятых долей рН) определить кислотность исследуемых водных растворов. Для более точного определения полученный при нанесении капли раствора цвет индикаторной бумаги немедленно сравнивают с эталонной цветовой шкалой.
Природные индикаторы из растений
Антоцианы и другие растительные пигменты способны менять цвет в зависимости от рН среды (клеточного сока). Антоцианы имеют преимущественно красный цвет в кислой среде и синий в щелочной. Сок из красной капусты или столовой свёклы нередко используют в качестве индикатора при начальном обучении химии.
См. также
Литература
- Бейтс Р., Определение рН. Теория и практика, пер. с англ., 2 изд., Л., 1972
Внешние ссылки
dic.academic.ru
Химические индикаторы — это… Что такое Химические индикаторы?
Индика́тор (лат. indicator – указатель) — соединение, позволяющее визуализировать изменение концентрации какого-либо вещества или компонента, например, в растворе при титровании, или быстро определить pH, еН и др. параметры. Существуют также химические индикаторы для самых различных специальных целей, например, для определения дозы облучения.
Применение индикаторов
Индикаторы позволяют быстро и достаточно точно контролировать состав жидких или газообразных сред, следить за изменением их состава, или за протеканием химической реакции.
Широко используются кислотно-основные индикаторы, разбавленные растворы которых обладают способностью заметно изменять цвет, в зависимости от кислотности раствора. Причина изменения цвета — изменения в строении молекул индикатора в кислой и щелочной среде, что приводит к изменению спектра поглощения раствора.
Для определения состава газовых сред используют индикаторные бумажки и индикаторные трубки.
Структура молекул и цвет индикаторов
Трифенилметановые красители-индикаторы
Структура трифенилметановых красителейТрифенилметановые красители широко используются в качестве индикаторов. В зависимости от типа заместителей изменения структуры молекулы приводят к широкой гамме цветных соединений, большинство из которых могут служить химическими индикаторами.
Название \ Положение | 2″ | 2 | 3 | 4 | 5 | 2′ | 3′ | 4′ | 5′ |
---|---|---|---|---|---|---|---|---|---|
Бромтимоловый синий | SO3− | Me | Br | OH | MeEt | Me | Br | OH | MeEt |
Бромфеноловый синий | SO3− | H | Br | OH | Br | H | Br | OH | Br |
Бромкрезоловый зелёный | SO3− | Me | Br | OH | Br | Me | Br | OH | Br |
Крезоловый красный | SO3− | H | Me | OH | H | H | Me | OH | H |
Фенолфталеин | CO2− | H | H | OH | H | H | H | OH | H |
Тимолфталеин | CO2− | Me | H | OH | MeEt | Me | H | OH | MeEt |
Малахитовый зелёный | H | H | H | NMe2 | H | H | H | NMe2 | H |
Производные азобензола
.
Виды индикаторов
Распространённые кислотно-основные индикаторы
Индикатор | Окраска/кислая форма | Окраска/щелочная форма | Интервалы pH |
---|---|---|---|
Ализариновый желтый | желтый | фиолетовый | 10,1 — 12,1 |
Тимолфталеин | бесцветный | синий | 9,4 — 10,6 |
Фенолфталеин | бесцветный | красный | 8,2 — 10,0 |
Крезоловый красный | желтый | тёмно-красный | 7,0 — 8,8 |
Нейтральный красный | красный | коричневый | 6,8 — 8,0 |
Феноловый красный | желтый | красный | 6,8 — 8,0 |
Бромтимоловый синий | желтый | синий | 6,0 — 7,6 |
Лакмус (азолитмин) | красный | синий | 5,0 — 8,0 |
Метиловый красный | красный | желтый | 4,4 — 6,2 |
Метиловый оранжевый | розовый, желтый | желтый | 3,0 — 4,4 |
Бромфеноловый синий | красный | синий | 3,0 — 4,6 |
Тропеолин 00… | — | желтый | 1,4 — 3,2 |
Металлоиндикаторы
Редокс-индикаторы
Редокс- или окислительно-восстановительные индикаторы изменяют цвет в зависимости от присутствия в растворе окислителей или восстановителей. Дифениламин бесцветен в восстановленной форме, но имеет фиолетовый цвет в окисленном состоянии. Некоторые ярко окрашенные вещества сами могут служить индикатором. Например, при перманганатометрическом определении железа(II)
10FeSO4 + 2KMnO4+ 8H2SO4 = 5Fe2(SO4)3 + 2MnSO4 + K2SO4 + 8H2O
добавляемый в процессе титрования раствор перманганата обесцвечивается, пока не будут окислены все ионы Fe2+, имевшиеся в исследуемом растворе. Точка эквивалентности определяется по розовой окраске раствора, из-за возникшего избытка перманганат-анионов.
Хингидрон также является окислительно-восстановительным индикатором. это смесь хинона и гидрохинона.
Адсорбционные индикаторы
Крахмал
Термоиндикаторы
Химические индикаторы влажности
См. также
dic.academic.ru