cart-icon Товаров: 0 Сумма: 0 руб.
г. Нижний Тагил
ул. Карла Маркса, 44
8 (902) 500-55-04

Решение квадратных уравнений 9 класс примеры и их решение – Решение полных квадратных уравнений.

Решение квадратных уравнений

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

Дискриминант

Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b

2 − 4ac.

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x2 − 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. x2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:

a = 5; b = 3; c = 7;
D = 32 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

Задача. Решить квадратные уравнения:

  1. x2 − 2x − 3 = 0;
  2. 15 − 2x − x2 = 0;
  3. x2 + 12x + 36 = 0.

Первое уравнение:
x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2)2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x − x2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2)2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left( -1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left( -1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:
x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 122 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

\[x=\frac{-12+\sqrt{0}}{2\cdot 1}=-6\]

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x2 + 9x = 0;
  2. x2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax2 + c = 0. Немного преобразуем его:

Решение неполного квадратного уравнения

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c/a) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax2 + c = 0 выполнено неравенство (−c/a) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c/a) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c/a) ≥ 0. Достаточно выразить величину x

2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x2 − 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 − 9 = 0.

x2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x1 = 0; x2 = −(−7)/1 = 7.

5x2 + 30 = 0 ⇒ 5x2 = −30 ⇒ x2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x2 − 9 = 0 ⇒ 4x2 = 9 ⇒ x2 = 9/4 ⇒ x1 = 3/2 = 1,5; x2 = −1,5.

Смотрите также:

  1. Теорема Виета
  2. Следствия из теоремы Виета
  3. Тест на тему «Значащая часть числа»
  4. Правила комбинаторики в задаче B6
  5. Как представить обычную дробь в виде десятичной
  6. Задача B15: частный случай при работе с квадратичной функцией

www.berdov.com

Квадратные уравнения, примеры решений

Теория по квадратным уравнениям

ОПРЕДЕЛЕНИЕ Квадратным уравнением называется уравнение вида , где .

Возможны такие случаи:

, тогда имеем квадратное уравнение вида и .

, тогда имеем квадратное уравнение вида , если ; если – корней нет.

, тогда имеем квадратное уравнение вида .

, тогда имеем полное квадратное уравнение , которое решается или с помощью дискриминанта:

   

Или по теореме Виета:

   

Примеры

ПРИМЕР 1
Задание Решить следующие неполные квадратные уравнения

   

Решение 1) В уравнении вынесем за скобки . Произведение равно нулю, если один из сомножителей равен нулю, следовательно:

   

или

   

2) В уравнении перенесем свободный член вправо и раздели его на коэффициент при :

   

3) В уравнении перенесем свободный член вправо и раздели его на коэффициент при :

   

У данного квадратного уравнения нет корней.

4) уравнение равносильно уравнению , которое имеет два совпадающих корня .

Ответ

Корней нет

ПРИМЕР 2
Задание Решить квадратное уравнение
Решение Подсчитаем для заданного уравнения, чему равен дискриминант:

   

Так как , то уравнение имеет два совпадающих корня:

   

Ответ
ПРИМЕР 3
Задание Решить уравнение
Решение Вычислим дискриминант для исходного уравнения, получим:

   

Так как , данное уравнение решений не имеет.

Ответ Корней нет.
ПРИМЕР 4
Задание Решить квадратное уравнение
Решение Дискриминант заданного уравнения, равен

   

Следовательно, уравнение имеет два различных корня

   

Ответ
ПРИМЕР 5
Задание Решить уравнение, используя теорему Виета:
Решение Пусть и – корни квадратного уравнения, по следствию из теоремы Виета

   

Проанализируем полученные равенства. Произведение корней отрицательно, следовательно, корни имеют разные знаки. Разложим –12 на множители, учитывая, что они должны быть числами разного знака. Возможны такие варианты: –12 и 1; 12 и –1; –6 и 2; 6 и –2; –4 и 3; 4 и –3. Так как сумма корней равна 1, то корнями будут числа и .

Ответ

ru.solverbook.com

Квадратные уравнения. Полное квадратное уравнение. Неполное квадратное уравнение. Дискриминант.

Как решить квадратное уравнение?
Как выглядит формула квадратного уравнения?
Какие бывают квадратные уравнения?
Что такое полное квадратное уравнение?

Что такое неполное квадратное уравнение?
Что такое дискриминант?
Сколько корней имеет квадратное уравнение?
Эти вопросы вас больше не будут мучить, после изучения материала.

Формула квадратного уравнения:

ax2+bx+c=0,где a≠0

где x — переменная,
a,b,c — числовые коэффициенты.

Виды квадратного уравнения

Пример полного квадратного уравнения:

3x2-3x+2=0
x2-16x+64=0

Решение полных квадратных уравнений сводится к нахождению дискриминанта:

Формула дискриминанта:

D=b2-4aс

Если D>0, то уравнение имеет два корня и находим эти корни по формуле:

Корни квадратного уравнения

Если D=0, уравнение имеет один корень

корень уравнения

Если D<0, уравнение не имеет вещественных корней.

Рассмотрим пример №1:

x2-x-6=0

Записываем сначала, чему равны числовые коэффициенты a, b и c.

Коэффициент a всегда стоит перед x2, коэффициент b  всегда перед переменной x, а коэффициент  c – это свободный член.
a=1,b=-1,c=-6

Находим дискриминант:
D=b2-4ac=(-1)2-4∙1∙(-6)=1+24=25

Дискриминант больше нуля, следовательно, у нас два корня, найдем их:

Нахождения корней по дискриминанту

Ответ: x1=3; x2=-2

Пример №2:
x2+2x+1=0
Записываем, чему равны числовые коэффициенты a,b и c.
a=1,b=2,c=1
Далее находи дискриминант.
D=b2-4ac=(2)2-4∙1∙1=4-4=0
Дискриминант равен нулю, следовательно, один корень:
x=-b/2a=-2/(2∙1)=-1

Ответ: x=-1

Пример №3:
7x2-x+2=0
Записываем, чему равны числовые коэффициенты a,b и c.
a=7,b=-1,c=2
Далее находи дискриминант.
D=b2-4ac=(-1)2-4∙7∙2=1-56=-55
Дискриминант меньше нуля, следовательно, корней нет.

Рассмотрим неполное квадратное уравнение:
ax2+bx=0, где числовой коэффициент c=0.

Пример как выглядят такие уравнения:
x2-8x=0
5x2+4x=0

Чтобы решить такое уравнение необходимо переменную x вынести за скобки. А потом каждый множитель приравнять к нулю и решить уже простые уравнения.

ax2+bx=0
x(ax+b)=0
x1=0 x2=-b/a

Пример №1:
3x2+6x=0
Выносим переменную x за скобку,
x(3x+6)=0
Приравниваем каждый множитель к нулю,
x1=0

3x+6=0
3x=-6
Делим все уравнение на 3, чтобы получить у переменной x коэффициент равный 1.
x=(-6)/3
x2=-2

Ответ: x1=0; x2=-2

Пример №2:
x2-x=0
Выносим переменную x за скобку,
x(x-1)=0
Приравниваем каждый множитель к нулю,
x1=0

x-1=0
x2=1

Ответ: x1=0; x2=1

Рассмотрим неполное квадратное уравнение:
ax2+c=0, где числовой коэффициент b=0.

Чтобы решить это уравнение, нужно записать так:
x2=c/a , если число c/a будет отрицательным числом, то уравнение не имеет решения.
А если c/a положительное число, то решение выглядит таким образом:

корень квадратного уравнения

Пример №1:
x2+5=0
x2=-5, видно, что -5<0, значит нет решения.
Ответ: нет решения

Пример №2:
3x2-12=0
3x2=12
x2=12/3
x2=4

4>0 следовательно, есть решение,
x1=√4
x1=2

x2=-√4
x2=-2

Ответ: x1=2; x2=-2

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.

tutomath.ru

Решение квадратных уравнений с помощью формулы.(9 класс) конспект урока и презентация.

Решение квадратных уравнений с помощью формулы.

Цели урока:

Образовательные — систематизировать знания, выработать умение выбирать рациональный способ решения квадратных уравнений и создать условия контроля (самоконтроля, взаимоконтроля) усвоения знаний и умений.

развивающая: расширение кругозора учащихся, развитие интереса к предмету, развивать коммуникативные навыки и волевые качества личности через работу в парах.

воспитательная: воспитание чувства товарищества, навыков самоконтроля и взаимоконтроля, воли, упорства в достижении цели. 

Задачи:
• отработать алгоритм решения квадратных уравнений;
• выявить пробелы в применении алгоритма.
• мотивировать детей на устранение своих пробелов.
• развивать память, внимание, логическое мышление;
• развивать умение работать в парах, группах, оценивать свою работу;

 

Ход урока

 

 

Структурные компоненты урока

Деятельность учителя

Деятельность учащихся

Оргмомент (1мин)

Определение готовности учащихся к работе

Подготавливают рабочее

место

Целеполагание и мотивация (1мин)

Введение в тему урока. Акцентирую внимание на целях урока, зачитываю эпиграф к уроку

Осмысливают цели урока

Актуализация знаний и умений

(10 мин)

Провожу вводный контроль по домашнему заданию

 Слушают объяснения отвечающих у доски.

Вспоминают алгоритм решения уравнений  вида   х = а  и  неполных квадратных уравнений.

 

Систематизация и обобщение  (8 мин)

Координирую ход работы учащихся, консультирую при возникновении затруднений.

 

Вспоминают формулу дискриминанта

два ученика работают у доски, остальные на местах.

 

Применение учебного материала в новой учебной ситуации

 

Работа в группах

(15 мин)

индивид. работа

(6 мин)

Координирую ход работы учащихся, консультирую при возникновении затруднений.

Создаю проблемную ситуацию.

Создаю ситуацию тайны.

Создаю   условие   для самостоятельного выпол­нения задания

Работают группами.

Сопоставляют уравнения и способы их решения.

Решают уравнение и находят выход из проблемной ситуации

Выполняют самостоятельную работу и разгадывают тайну.

Домашнее задание

(2 мин)

Даю рекомендации по выбору уравнений для ДЗ

Предлагаю дополнительное задание для желающих

для

Выбирают три уравнения, записывают ДЗ в дневник.

Подведение итогов

(2 мин)

Подвожу итог урока. Даю информацию по теме следую­щего урока.

Анализируют свою деятельность на уроке.

Определяют причины ошибок, если они были допущены

 

 

 

 

 

 

 

 

 

 

                                                             Ход урока:

1.   Организационный момент.

Добрый день дорогие  друзья, гости! Я рада приветствовать вас на нашем уроке, и  прошу всех вас улыбнуться друг другу, а ребят прошу, мысленно пожелать успехов и себе и товарищам.  Чтобы у нас царила атмосфера доброжелательности, предлагаю начать урок с таких слов:

В класс вошел – не хмурь лица,

Будь разумным до конца.

ты не зритель и не гость –

Ты программы нашей гвоздь,

Не стесняйся, не смущайся,

Всем законам подчиняйся.

А законы у нас сегодня будут такие: 

каждый из вас имеет возможность получить оценку за урок по результатам работы на различных его этапах. Для этого у вас на партах лежат оценочные листы, в которых вы будете фиксировать свои успехи в баллах.

 И ещё один не обсуждаемый закон: для ответа на поставленный вопрос вы поднимаете руку и ни в коем случае не перебиваете друг друга.  Желаю всем удачи. 

2. Проверка выполнения домашнего задания.

Начнём работу с проверки домашнего задания.  Дома вы выполняли самостоятельную работу. Взаимопроверка. Проверьте правильность выполнения задания своих товарищей по парте и поставьте карандашом оценки в тетрадь, а затем сами выставьте баллы в оценочный лист.      ( Слайд )     

                     1.   х2 – 12х + 27 = 0                          2.  3х2 + 4х – 1 = 0

               3.  4х2 – 8 = 0                             4.  х2 – 10х + 100 = 0

              5.  5х2 + 6х = 0                           6.  х2 – 8х + 12 = 0

             7.  3х2 = 0                                   8.  14 – 2х2 + х = 0

n   а)  Выпишите номера полных квадратных уравнений;

n    б)  Выпишите коэффициенты  а, в, с  в уравнении 8;

n    в)  Выпишите номер неполного  квадратного  уравнения,  имеющего один    корень;

n    г)  Найдите дискриминант в уравнении  2;

n    д) Решите уравнение 1;

n    е)  Решите уравнение 6.

( Слайд )

Ответы к дом. заданию

              а)  1,2,4,6,8.          

n                б)  а = — 2, в = 1, с = 14.

n                в)  7.

n                г)  Д = 28.

n                д)  х1 = 9, х2 = 3.

n                е)   х1 = 6, х2 = 2.

 

3. Актуализация опорных знаний

Над какой учебной задачей мы с вами работаем на последних уроках алгебры? (учимся решать квадратные уравнения)
— Что нужно знать и уметь делать, чтобы решить квадратное уравнение? (формулы корней кв. уравнений, дискриминанта, )
Вот давайте и проверим, насколько хорошо вы усвоили определения и понятия которые мы с вами применяем при решении квадратных уравнений.
*Какое уравнение называется квадратным? / Квадратным уравнением называется уравнение вида ax2+bx+c=0, где x – переменная, a, b, c некоторые числа, причем a≠0./
*Какие уравнения называются неполными квадратными уравнениями? / Если в квадратном уравнении хотя бы один из коэффициентов, b или c равен нулю,  или оба одновременно равны нулю ,то такое уравнение называется неполным квадратным уравнением./
*Какое квадратное уравнение называется приведенным? квадратное уравнение, у которого первый коэффициент 1? 

От чего зависит наличие действительных корней квадратного уравнения?

Сколько корней может иметь квадратное уравнение?

Как вычислить дискриминант

4. Постановка цели урока.

—  Какая же тема нашего сегодняшнего урока?
-Итак,  тема нашего урока: «Решение квадратных уравнений по формуле». (слайд 3)
Давайте попробуем сформулировать цель урока. Ребята, скажите,  что должен уметь делать  каждый из вас на сегодняшнем уроке? (уметь правильно, быстро и рационально решать квадратные уравнения)  Отработка решения квадратных уравнений, обобщение навыков, систематизация знаний это и будет целью нашего урока) .

              Квадратные уравнения – тема очень важная в курсе математики, она является первой ступенькой в изучении более сложного материала.

На доске уравнение:  23х2+12х+2013=0

— Назовите вид данного  уравнения. Назовите его коэффициенты.

  О каком событии говорят коэффициенты уравнения?      (Дата проведения урока)

 Итак, запишите сегодняшнее число, классная работа.

5. Работа по учебнику

№541(д, е), №542(г, д), 547(а, б)

 

6. Уравнение с параметром

СЛАЙД    (2m-5)x2+(4m+8)x+36=0

При каких значениях параметра m данное уравнение:

А)  является приведенным квадратным уравнением     / m=3

   В)  является неполным квадратным уравнением          /m=-2

   С)  не является квадратным уравнением                        /m=2,5

 

 

7. ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

   Уравнения

Корни

?

 х2 + 2х – 3 = 0

                 

 

 х2 – 7х + 6 = 0

       

 

4х2 – 7х +3 = 0

       

 

 

5х2 –  х – 4 = 0

         

 

 

— Посмотрите на уравнения и их корни, записанные в таблице.

— Что вы заметили? (корень равен 1)

— Как вы думаете, это случайно?

— Какую проблему нам предстоит сейчас решить? (выяснить, какие уравнения 

  имеют корень, равный 1 и как быстро найти второй корень)     (слайд)

— От чего зависят корни квадратного уравнения? (от коэффициентов  ур-я)

— Значит, мы предполагаем (выдвигаем гипотезу), что существует особая

   связь, зависимость между корнями уравнения и его коэффициентами

— Наблюдательный Франсуа Виет уже установил одну из таких  зависимостей и этой теоремой мы познакомимся на следующих уроках а сегодня , и мы тоже попытаемся внести свою лепту в этот  вопрос.

 Сейчас мы будем работать в группах. Каждой группе дается задание, и вам нужно провести  небольшое  исследование и поделится полученным результатом, ответив на вопросы: 

    1) при каком условии один из корней квадратного уравнения равен 1?

    2) как найти второй корень?

          (ВЫПОЛНЯЮТ ИССЛЕДОВАНИЕ)

Вывод:

(На слайде)

Т 1. Если в квадратном уравнении аx2 + вx + с = 0 сумма коэффициентов 

а + в +с = 0,   то  х1 = 1,  х2  = с/а

Т.2 Если в квадратном уравнении  ах2 + вх + с = 0  сумма  коэффициентов

  а – в + с = 0,  то  х1 =  -1,  х2 =  — с/а.

 

8. Решение уравнений

Из данных уравнений выберите те, которые решаются облегченным способом, т.е применяя эти теоремы: 

а5х2 – 7х + 2 = 0

а + в + с =5 – 7 + 2 = 0,  значит  х1 =  1, х2 = .

б)  3х2 + 2х – 1 = 0

 а – в + с = 3 – 2 – 1 = 0,  значит  х1 = -1,  х2 = .

в) 3р 2 -10р+3=0

 

 

8. Домашнее задание (2 мин)

         1)    Решить три  уравнения (любым способом) и заполнить таблицу.

Решения уравнений записать в тетрадь.

1 уровень – № 1, 2, 3

2 уровень – № 2, 3, 4

3 уровень – № 3, 4, 5

 

2)  Составить два уравнения, которые решались бы облегченным способом

 (a + b + c = 0 или a – b + c = 0) и заполнить таблицу (по желанию).

Уравнение

Корни x и x

x + x

x  x

 

 

 

 

 

 

 

 

9. Тест

1.Дискриминант уравнения 7х²+6х+1 равен

          1) −1      2)8               3) 0               4) 1

2. Какие из чисел являются корнем уравнения   2х² − 5х + 3 =  0?

      1) −1      2) 1,5           3) 0                 4) 1

3. Один из корней уравнения   ах² − 4х +12 = 0 равен   1.  Чему равно значение  а?

         1) −1          2) −5          3) 3             4) 1

4. Найти разность, между  большим и меньшим   корнями уравнения  

     х² − 6х + 8 =  0

 

infourok.ru

Решение неполных квадратных уравнений.

В данной статье мы рассмотрим решение неполных квадратных уравнений.

Но сначала повторим какие уравнения называются квадратными. Уравнение вида ах2 + bх + с = 0, где х – переменная, а коэффициенты а, b и с некоторые числа, причем а ≠ 0, называется квадратным. Как мы видим коэффициент при х2 не равен нулю, а следовательно коэффициенты при х или свободный член могут равняться нулю, в этом случае мы и получаем неполное квадратное уравнение.

Неполные квадратные уравнения бывают трех видов:

1)    Если b = 0, с ≠ 0, то ах2 + с = 0;

2)    Если b ≠ 0, с = 0, то ах2 + bх = 0;

3)    Если b= 0, с = 0, то ах2 = 0.

  • Давайте разберемся как решаются уравнения вида ах2 + с = 0.

Чтобы решить уравнение перенесем свободный член с в правую часть уравнения, получим

ах2 = ‒с. Так как а ≠ 0, то разделим обе части уравнения на а, тогда х2 = ‒с/а.

Если ‒с/а > 0 , то уравнение имеет два корня 

x = ±√(–c/a).

Если же ‒c/a < 0, то это уравнение решений не имеет. Более наглядно решение данных уравнений представлено на схеме.

Давайте попробуем разобраться на примерах, как решать такие уравнения.

Пример 1. Решите уравнение 2х2 ‒ 32 = 0.

Решение

2 = 32

х2 = 32/2

х2 = 16

х = ± 4

Ответ: х1 = ‒ 4, х2 = 4.

Пример 2. Решите уравнение 2х2 + 8 = 0.

Решение

2 = ‒ 8

х2 = ‒ 8/2

х2 = ‒ 4

Ответ: уравнение решений не имеет.

  • Разберемся как же решаются уравнения вида ах2 + bх = 0.

Чтобы решить уравнение ах2 + bх = 0, разложим его на множители, то есть вынесем за скобки х, получим х(ах+ b) = 0. Произведение равно нулю, если хотя бы один из множителей равен нулю. Тогда или х = 0, или ах+ b = 0. Решая уравнение ах+ b = 0, получим ах= ‒ b, откуда х = ‒ b/a. Уравнение вида ах2 + bх = 0, всегда имеет два корня х1 = 0 и х2 = ‒ b/a. Посмотрите как выглядит на схеме решение уравнений этого вида.

Закрепим наши знания на конкретном примере.

Пример 3. Решить уравнение 3х2 ‒ 12х = 0.

Решение

х(3х ‒ 12) = 0

х= 0 или 3х – 12 = 0

              3х = 12

               х = 12/3

               х = 4

Ответ: х1 = 0, х2 = 4.

  • Уравнения третьего вида ах2 = 0 решаются очень просто.

Если ах2 = 0, то х2 = 0. Уравнение имеет два равных корня х1 = 0, х2 = 0.

Для наглядности рассмотрим схему.

Убедимся при решении примера 4, что уравнения этого вида решаются очень просто.

Пример 4. Решить уравнение 7х2 = 0.

Решение

х2 = 0

х1,2 = 0

Ответ: х1, 2 = 0.

Не всегда сразу понятно какой вид неполного квадратного уравнения нам предстоит решить. Рассмотрим следующий пример.

Пример 5. Решить уравнение

Решение

Умножим обе части уравнения на общий знаменатель, то есть на 30

Сократим

5(5х2 + 9) – 6(4х2 – 9) = 90.

Раскроем скобки

25х2 + 45 – 24х2 + 54 = 90.

Приведем подобные

х2 + 99 = 90.

Перенесем 99 из левой части уравнения в правую, изменив знак на противоположный

х2 = – 9.

Ответ: корней нет.

Мы разобрали как решаются неполные квадратные уравнения. Надеюсь, теперь у вас не будет сложностей с подобными заданиями. Будьте внимательны при определении вида неполного квадратного уравнения, тогда у вас все получится.

Если у вас появились вопросы по данной теме, записывайтесь на мои уроки, мы вместе решим возникшие проблемы.

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Решение квадратных уравнений с параметрами с учащимися 8-9 классов

Квадратные уравнения применяются для решения задач практического характера с незапамятных времен. Для большинства современных учащихся их решение едва ли может представлять особую сложность, однако ситуация может кардинально измениться, если в уравнении появится параметр… На примере 3-ех задач различного уровня сложности автор попытался осветить наиболее частые проблемы, с которыми могут столкнуться школьники в рамках подготовки к Единому государственному экзамену.

Говоря о проблемах и трудностях, с которыми учащиеся 8-9 классов могут столкнуться на уроках алгебры, безусловно, следует упомянуть вопросы, касающиеся решения квадратных уравнений с параметрами. Казалось бы, сами по себе квадратные уравнения вряд ли могут представлять сложность для учащихся 8-9 классов, однако в случае если в квадратном уравнении фигурирует параметр, дело принимает совсем иной оборот.

Итак, попробуем разобраться.

Ученые полагают, что квадратные уравнения применялись астрономами, специалистами по аграрному и военному дела (а впоследствии и многими другими, включая, конечно, математиков) еще во времена существования Древнего Вавилона в III-II вв. до н.э. В соревнованиях по решению квадратных уравнений участвовали ученые Древней Индии, задачи с уравнениями второй степени решали также в Древней Греции, Древнем Риме, Древнем Китае, одним словом этим занимались ученые-представители всех крупных древних цивилизаций. С развитием математики проблемой квадратных уравнений занимались видные мировые ученые, такие как Франсуа Виет, Михаэль Штифель, Альбер Жирар, Рене Декарт и другие. А теперь и мы прикоснемся к тому, что занимало умы великих ученых-математиков на протяжении тысячелетий.
Итак, квадратные уравнения.

Согласно общему определению квадратное уравнение – это уравнение вида ax^2+bx+c=0, где x- переменная, a, b, c – коэффициенты, причем a≠0. Известно, что для решения уравнения подобного вида необходимо вычислить дискриминант и в зависимости от его значения (если D ≥0 воспользоваться формулой корней, если D <0, корней нет) получить соответствующий ответ. Однако в случае решения квадратных уравнений с параметрами ситуация не будет столь однозначной. Давайте рассмотрим несколько примеров.

Необходимо исследовать и определить, при каких значениях параметра уравнения имеют решения:

Задача №1

x^2- (m-2)*x-(m-2)=0

Квадратное уравнение имеет решения, если D ≥0, т.е. D=(m-2)^2+4(m-2)=(m-2)(m+2)≥0

Таким образом, уравнение имеет решения при m∈(-∞;-2]∪[2;+∞) и решением будет являться значения x_1,2=(m-2±√(m^2-4))/2

Соответственно, при m∈(-2;2) D<0, т.е. решений нет.

При m=-2 x=-2 (единственное решение).
При m=2 x=0 (единственное решение).

Задача №2

x/(x^2-4)+a/(x^2+2x)+1/(2x-x^2 )=0

Найдем ОДЗ: x≠±2
x≠0

Путем приведения к общему знаменателю получим: x^2+(x-2)a-(x+2)=0.

Упростив выражение, получим: x^2+(a-1)x-2a-2=0

Если D=(a-1)^2+8a+8=(a+3)^2>0, тогда при
a≠-3 x_1,2=(1-a±√((a+3)^2 ))/2 , т.е. x_1=- a-1; x_2=2,но x_2=2 не принадлежит ОДЗ.

Таким образом, решением данного уравнения будет являться корень x_1=- a-1 в случае, если:
x_1=- a-1≠0, т.е. a≠-1
x_1=- a-1≠2, т.е. a≠-3
x_1=- a-1≠-2, т.е. a≠1

Ответ: При a≠±1 ∃ единственное решение x=- a-1
a≠-3

Задача №3

x/m(x+1) -2/(x+2)=(3-m^2)/m(x+1)(x+2)

Найдем ОДЗ: m≠0
x≠-1
x≠-2

Приведем уравнение к общему знаменателю: x(x+2)-2m(x+1)=3-m^2

Упростив выражение, получим: x^2-2(m-1)x+m^2-2m-3=0

Если D=4(m-1)^2-4(m^2-2m-3)=16>0, тогда x_1,2= (2(m-1)±4)/2=(m-1)±2
x_1= m+1
x_2= m-3

Выясним, при каких значениях параметра m x принадлежит ОДЗ (см.действие 1).

x≠-1 , тогда x_1= m+1≠-1,тогда m≠-2,а значит x_2= m-3≠-2-3≠-5 или x_2= m-3≠-1,тогда m≠2,а значит x_1= m+1≠2+1≠3
x≠-2,тогда x_1= m+1≠-2,тогда m≠-3,а значит x_2= m-3≠-3-3≠-6 или x_2= m-3≠-2,тогда m≠1,а значит x_1= m+1≠1+1≠2

При m=0 уравнение не определено.

Ответ: При m≠±2 существует 2 корня: x_1= m+1 и x_2= m-3
m≠-3
m≠1
m≠0

Итак, мы рассмотрели несколько примеров решений квадратных уравнений с параметрами. Эта тема включена в учебную программу по алгебре для учащихся 8-9 классов, что делает ликвидацию пробелов по данной тематике необходимым фактором в условиях современного образовательного процесса, а также в рамках подготовки к Единому государственному экзамену.

Всего комментариев: 0

www.uchportal.ru

Урок по теме «Решение квадратных уравнений». 8-й класс

Разделы: Математика


Рассмотрим стандартные (изучаемые в школьном курсе математики) и нестандартные приёмы решения квадратных уравнений.

1. Разложение левой части квадратного уравнения на линейные множители.

Рассмотрим примеры:

3) х2 + 10х – 24 = 0.

6(х2 + х – х ) = 0 | : 6

х2 + х – х – = 0;

х(х – ) + (х – ) = 0;

х(х – ) (х + ) = 0;

= ; – .

Ответ: ; – .

Для самостоятельной работы:

Решите квадратные уравнения, применяя метод разложения левой части квадратного уравнения на линейные множители.

а) х2 – х = 0;

г) х2 – 81 = 0;

ж) х2 + 6х + 9 = 0;

б) х2 + 2х = 0;

д) 4х2 – = 0;

з) х2 + 4х + 3 = 0;

в) 3х2 – 3х = 0;

е) х2 – 4х + 4 = 0;

и) х2 + 2х – 3 = 0.

Ответы:

а) 0; 1

г) ± 9

ж) – 3

б) -2; 0

д)

з) -3; -1

в) 0; 1

е) 2

и) -3; -1

2. Метод выделения полного квадрата.

Рассмотрим примеры:

Для самостоятельной работы.

Решите квадратные уравнения, применяя метод выделения полного квадрата.

3. Решение квадратных уравнений по формуле.

ах2 + вх + с = 0, (а | · 4а

2х2 + 4ав + 4ас = 0;

2ах + 2ах·2в + в2 – в2 + 4ас = 0;

2 = в2 – 4ас;

= ± ;

2ах = -в ±;

х1,2 =.

Рассмотрим примеры.

Для самостоятельной работы.

Решите квадратные уравнения, применяя формулу х1,2 =.

4. Решение квадратных уравнений с использованием теоремы Виета (прямой и обратной)

x2 + px +q = 0 – приведённое квадратное уравнение

по теореме Виета.

Если то уравнение имеет два одинаковых корня по знаку и это зависит от коэффициента .

Если p, то .

Если p, то.

Например:

Если то уравнение имеет два различных по знаку корня, причём больший по модулю корень будет , если p и будет , если p.

Например:

Для самостоятельной работы.

Не решая квадратного уравнения, по обратной теореме Виета определите знаки его корней:

Ответы:

а, б, к, л – различные корни;

в, д, з – отрицательные;

г, е, ж, и, м – положительные;

5. Решение квадратных уравнений методом “переброски”.

Для самостоятельной работы.

Решите квадратные уравнения, применяя метод “переброски”.

6. Решение квадратных уравнений с применением свойств его коэффициентов.

I. ax2 + bx + c = 0, где a 0

1) Если а + b + с = 0, то х1 = 1; х2 =

Доказательство:

ax2 + bx + c = 0 |: а

х2 + х + = 0.

По теореме Виета

По условию а + b + с = 0, тогда b = -а – с. Далее получим

Из этого следует, что х1 =1; х2 = . Что и требовалось доказать.

2) Если а – b + с = 0 (или b = а +с ) , то х1 = – 1; х2 = –

Доказательство:

По теореме Виета

По условию а – b + с = 0 , т.е. b = а +с . Далее получим:

Поэтому х1 = – 1; х2 = – .

Рассмотрим примеры.

1) 345 х2 – 137 х – 208 = 0.

а + b + с = 345 – 137 – 208 = 0

х1 = 1; х2 = =

Ответ: 1;

2) 132 х2 – 247 х + 115 = 0.

а + b + с = 132 -247 -115 = 0.

х1 = 1; х2 = =

Ответ: 1;

Для самостоятельной работы.

Применяя свойства коэффициентов квадратного уравнения, решите уравнения

II. ax2 + bx + c = 0, где a 0

х1,2 = . Пусть b = 2k, т.е. чётное. Тогда получим

х1,2 = = = =

Рассмотрим пример:

2 – 14х + 16 = 0 .

D1 = (-7)2 – 3·16 = 49 – 48 = 1

х1,2 = ;

х1 = = 2; х2 =

Ответ: 2;

Для самостоятельной работы.

а) 4х2 – 36х + 77 = 0

б) 15х2 – 22х – 37 = 0

в) 4х2 + 20х + 25 = 0

г) 9х2 – 12х + 4 = 0

Ответы:

а) 3,5; 5,5

б) -1; 2

в) -2,5

г)

III. x2 + px + q = 0

х1,2 = – ± 2– q

Рассмотрим пример:

х2 – 14х – 15 = 0

х1,2 = 7 = 7

х1 = -1; х2 = 15.

Ответ: -1; 15.

Для самостоятельной работы.

а) х2 – 8х – 9 = 0

б) х2 + 6х – 40 = 0

в) х2 + 18х + 81 = 0

г) х2 – 56х + 64 = 0

Ответы:

а) -1; 9

б) -10; 4

в) –9

г) 28 18

7. Решение квадратного уравнения с помощью графиков.

Примеры.

а) х2 – 3х – 4 = 0

х2 = 3х + 4

Ответ: -1; 4

б) х2 – 2х + 1 = 0

х2 = 3х + 4

Ответ: 1

в) х2 – 2х + 5 = 0

х2 = 2х -5

Ответ: нет решений

Для самостоятельной работы.

Решить квадратные уравнения графически:

8. Решение квадратных уравнений с помощью циркуля и линейки.

ax2 + bx + c = 0,

х2 + х + = 0.

х1 и х2 – корни.

Пусть А(0; 1), С(0;

По теореме о секущих:

ОВ· ОД = ОА · ОС.

Поэтому имеем:

х1 · х2 = 1 · ОС;

ОС = х1 х2

К(; 0), где = —

F(0; ) = (0; ) = )

S(-; )

Итак:

1) Построим точку S(-; ) – центр окружности и точку А(0;1).

2) Проведём окружность с радиусом R = SA/

3) Абсциссы точек пересечения этой окружности с осью ох являются корнями исходного квадратного уравнения.

Возможны 3 случая:

1) R > SK (или R > ).

Окружность пересекает ось ох в точке В(х1; 0) и D(х2; 0), где х1 и х2 – корни квадратного уравнения ax2 + bx + c = 0.

2) R = SK (или R = ).

Окружность касается оси ох в тоске В11; 0), где х1 – корень квадратного уравнения

ax2 + bx + c = 0.

3) R < SK (или R < ).

Окружность не имеет общих точек с осью ох, т.е. нет решений.

Примеры.

1) x2 – 2x – 3 = 0.

Центр S(-; ),т.е.

х0 = = – = 1,

у0 = = = – 1.

(1; – 1) – центр окружности.

Проведём окружность (S; AS), где А(0; 1).

 

Ответ: х1 = – 1; х2 = 3.

2) x2 – 5x + 4 = 0.

х0 = = – = 2,5; у0 = = = 2,5.

 

Ответ: х1 = 1; х2 = 4.

3) x2 + 4x + 4 = 0.

х0 = = – = – 2,

у0 = = = 2,5

Ответ: х= -2.

4) x2 – 2x + 3 = 0.

х0 = = – = 1,

у0 = = = 2.

Ответ: нет решений.

Для самостоятельной работы.

Решить следующие квадратные уравнения с помощью циркуля и линейки:

9. Решение квадратных уравнений с помощью номограммы

Для решения используют Четырёхзначные математические таблицы В.М. Брадиса (таблица XXII, стр. 83).

Номограмма позволяет, не решая квадратного уравнения x2 + px + q = 0, по его коэффициентам определить корни уравнения. Например:

5) z2 + 4z + 3 = 0.

Оба корня отрицательные. Поэтому сделаем замену: z1 = – t. Получим новое уравнение:

t2 – 4t + 3 = 0.

t1 = 1 ; t2 = 3

z1 = – 1 ; z2 = – 3.

Ответ: – 3; – 1

6) Если коэффициенты p и q выходят за пределы шкалы, то выполняют подстановку z = k · t и решают с помощью номограммы уравнение: z2+ pz + q = 0.

к2 t2 + p· kt + q = 0. |: к2

t2 + t + = 0.

к берут с расчётом, чтобы имели место неравенства:

Для самостоятельной работы.

С помощью таблицы Брадиса решить следующие квадратные уравнения:

10. Геометрический метод решения квадратных уравнений

Рассмотрим примеры, которые решаются с помощью геометрии.

Пример 1. (из “Алгебры” ал-Хорезми)

х2 + 10х = 39.

10 : 4 = 2 ; · 2 = 6 .

SABCD = х2 + 4Sпр. + 4Sкв. = х2 + 4·2х + 4 · 6 = х2 + 10х + 25.

Заменим х2 + 10х на 39.

SABCD = 39 + 25 = 64 = 82.

Значит сторона АВ = 8.

х= 8 – 2 – 2 =8 – 5 = 3.

х = 3

х1 + х2 = -10,

3 + х2 = -10,

х2 = -13.

Ответ: – 13

Пример 2. (решение уравнения древними греками)

у2 + 6у – 16 = 0.

у2 + 6у = 16, |+ 9

у2 + 6у + 9 = 16 + 9

(у + 3)2 = 25

у + 3 = ± 5,

у1 = 2, у2 = -8.

Ответ: -8; 2

Для самостоятельной работы.

Решите геометрически уравнение у2 – 6у – 16 = 0.

Ответ: – 2; 8.

14.04.2013

xn--i1abbnckbmcl9fb.xn--p1ai

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *