cart-icon Товаров: 0 Сумма: 0 руб.
г. Нижний Тагил
ул. Карла Маркса, 44
8 (902) 500-55-04

Ответы контрольная работа по геометрии 9 класс по теме векторы – Контрольная работа по геометрии на тему Векторы (9 класс)

Контрольные работы по геометрии 9 класс (Атанасян)

Контрольная работа №1. Векторы.

Контрольная работа №1. Векторы.

Вариант 1.

Вариант 2.

1. ABCD – параллелограмм, Найдите разложение вектора по неколлинеарным векторам .

2. Дана трапеция ABCD с основаниями AD=20 и BC=8, О —точка пересечения диагоналей. Разложите вектор по векторам =и .

3. Диагонали ромба АС = а, BD = b. Точка K BD и BK : KD = 1 : 3. Найдите величину ||.

4. В равнобедренной трапеции острый угол равен 60, боковая сторона равна 12 см, большее основание равно 30 см. Найдите среднюю линию трапеции.

5. В прямоугольнике ABCD известно, что AD=

a, DC=b, O точка пересечения диагоналей. Найдите величину

1. ABCD – параллелограмм, Найдите разложение вектора по неколлинеарным векторам .

2. Дана трапеция ABCD с основаниями AD=15 и BC=10, О —точка пересечения диагоналей. Разложите вектор по векторам =и .

3. Диагонали ромба АС = а, BD = b. Точка K AC и AK : KC = 2: 3. Найдите величину ||.

4. В равнобедренной трапеции острый угол равен 60, боковая сторона равна 10 см, меньшее основание равно 14 см. Найдите среднюю линию трапеции.

5. В прямоугольнике ABCD известно, что AB=a, BC=b, O точка пересечения диагоналей. Найдите величину .

Контрольная работа №2.

Метод координат.

Контрольная работа №2.

Метод координат.

Вариант 1.

Вариант 2.

1. Установите связь между векторами

2. Векторы разложены по неколлинеарным векторам и . Разложите векторы по векторам .

3. Четырехугольник имеет вершины с координатами А (1;1), В (3;5), С (9;-1), D(7;-5). Определите вид четырехугольника (с обоснованием) и найдите его диагонали.

4. Напишите уравнение окружности с центром в точке С (-3;1), проходящей через точку А (2;3).

5. Прямая l проходит через точки А (-3;1) и В (1;-7). Напишите уравнение прямой m, проходящей через точку С(5;6) и перпендикулярной прямой l.

1. Установите связь между векторами

2. Векторы разложены по неколлинеарным векторам и . Разложите векторы по векторам .

3. Четырехугольник имеет вершины с координатами А (-6;1), В (2;5), С (4;-1), D(-4;-5). Определите вид четырехугольника (с обоснованием) и найдите его диагонали.

4. Напишите уравнение окружности с центром в точке С (2;-3), проходящей через точку А (-1;-2).

5. Прямая l проходит через точки А (2;-1) и В (-3;9). Напишите уравнение прямой m, проходящей через точку С(3;10) и перпендикулярной прямой l.

Контрольная работа №3.

Соотношение между сторонами и углами треугольника. Скалярное произведение векторов.

Контрольная работа №3.

Соотношение между сторонами и углами треугольника. Скалярное произведение векторов.

Вариант 1.

Вариант 2.

1. Упростите выражение

2. В треугольнике

АВС . Найдите площадь треугольника и радиус окружности, описанной около него.

3. В параллелограмме ABCD даны стороны АВ=4 см, AD=5 см и угол Найдите диагонали параллелограмма и его площадь.

4. Найдите координаты вектора , если а угол между вектором и положительным направлением оси абсцисс острый.

5. Вычислите скалярное произведение векторов , если

1. Упростите выражение

2. В треугольнике АВС . Найдите площадь треугольника и радиус окружности, описанной около него.

3. В параллелограмме ABCD даны стороны АВ=8 см, AD=3 см и угол Найдите диагонали параллелограмма и его площадь.

4. Найдите координаты вектора , если а угол между вектором и положительным направлением оси абсцисс тупой.

5. Вычислите скалярное произведение векторов , если

Контрольная работа №4. Длина окружности и площадь круга.

Контрольная работа №4. Длина окружности и площадь круга.

Вариант 1.

Вариант 2.

1. Три последовательные стороны четырехугольника, описанного около окружности, относятся как 3:4:5. Периметр этого четырехугольника равен 48 см. Найдите длины его сторон.

2. Около правильного шестиугольника описана окружность и в него вписана окружность. Длина большей окружности равна 4π. Найдите площадь кольца и площадь шестиугольника.

3. Хорда окружности равна и стягивает дугу в 90. Найдите длину дуги и площадь соответствующего сектора.

4. Найдите радиус сектора, если площадь соответствующего сегмента равна

.

5. В треугольник вписана окружность радиуса 3 см. Найдите длины сторон треугольника, если одна из них разделена точкой касания на отрезки длиной 4 см и 3 см.

1. Три последовательные стороны четырехугольника, описанного около окружности, относятся как 4:5:6. Периметр этого четырехугольника равен 80 см. Найдите длины его сторон.

2. Около правильного треугольника описана окружность и в него вписана окружность. Длина меньшей окружности равна 8π. Найдите площадь кольца и площадь треугольника.

3. Хорда окружности равна 6 и стягивает дугу в 60. Найдите длину дуги и площадь соответствующего сектора.

4. Найдите радиус сектора, если площадь соответствующего сегмента равна

.

5. В треугольник вписана окружность радиуса 4 см. Найдите длины сторон треугольника, если одна из них разделена точкой касания на отрезки длиной 4 см и 5 см.

Контрольная работа №5. Движения.

Контрольная работа №5. Движения.

Вариант 1.

Вариант 2.

1. Точка А (-2;3) симметрична точке А1 (6;-9) относительно точки В. Найдите координаты точки

В.

2. Дан треугольник АВС с вершинами А(2;1), В(-6;1), С(-1;5). Треугольник А1В1С1 симметричен треугольнику АВС относительно прямой, заданной уравнением х=1. Найдите координаты вершин А1, В1, С1.

3. Найдите вектор параллельного переноса, при котором прямая у=3х-2 переходит в прямую у=3х+4, а прямая 3х+2у=2 переходит в прямую 6х+4у=3.

4. В результате поворота вокруг точки В(1;2) на 60 против часовой стрелки точка А(4;2) перешла в точку А1. Найдите координаты этой точки.

5. Прямая m задана уравнением 3х+2у-5=0. Прямая n симметрична прямой m относительно точки В(2;3). Напишите уравнение прямой n.

1. Точка А (-3;1) симметрична точке А1 (9;-5) относительно точки В. Найдите координаты точки В.

2. Дан треугольник АВС с вершинами А(-4;5), В(1;5), С(-3;-1). Треугольник А1В1С1 симметричен треугольнику АВС относительно прямой, заданной уравнением у=1. Найдите координаты вершин А1, В1, С1.

3. Найдите вектор параллельного переноса, при котором прямая у=2х-1 переходит в прямую у=2х+3, а прямая 2х+3у=1 переходит в прямую 4х+6у=5.

4. В результате поворота вокруг точки В(2;1) на 30 против часовой стрелки точка А(6;1) перешла в точку А1. Найдите координаты этой точки.

5. Прямая m задана уравнением 2х+3у-7=0. Прямая

n симметрична прямой m относительно точки В(3;2). Напишите уравнение прямой n.

Контрольная работа №6.

Итоговая по программе 9 класса.

Контрольная работа №6.

Итоговая по программе 9 класса.

Вариант 1.

Вариант 2.

1. В параллелограмме ABCD точка E, AE:EC=1:5. Разложите вектор по векторам

2. Найдите косинус угла между векторами , если и угол между векторами равен 30.

3. Около круга радиусом R описан правильный шестиугольник. Найдите разность между площадью шестиугольника и круга.

4. Напишите уравнение окружности, симметричной относительно точки А (-1;3) окружности, заданной уравнением х2+у2-4х+6у=0

5. Первая окружность радиуса 4 см касается трех сторон прямоугольника. Вторая окружность касается первой внешним образом, а также касается сторон прямого угла. Найдите максимальный радиус второй окружности, если стороны прямоугольника равны 8 см и 12 см.

1. В параллелограмме ABCD точка E, BE:ED=1:4. Разложите вектор по векторам

2. Найдите косинус угла между векторами , если и угол между векторами равен 30.

3. Около круга радиусом R описан правильный треугольник. Найдите разность между площадью треугольника и круга.

4. Напишите уравнение окружности, симметричной относительно точки А (-2;3) окружности, заданной уравнением х2+у2+6х-4у=0

5. Первая окружность радиуса 9 см касается трех сторон прямоугольника. Вторая окружность касается первой внешним образом, а также касается сторон прямого угла. Найдите максимальный радиус второй окружности, если стороны прямоугольника равны 18 см и 20 см.

Контрольная работа № 7. Итоговая по курсу геометрии (7-9 классы)

Контрольная работа № 7. Итоговая по курсу геометрии (7-9 классы)

Вариант 1.

Вариант 2.

1. В равнобедренный треугольник с основанием 10 см и боковой стороной 5 см вписан квадрат так, что две его вершины лежат на основании, а другие две вершины – на боковых сторонах. Найдите сторону квадрата.

2. Найдите площадь круга, вписанного в ромб с диагоналями, равными 12 см и 16 см.

3. Найдите длину медианы ВМ треугольника АВС, если координаты вершин треугольника А (2;5), В (0;0), С(4;3).

4. Точка М является серединой боковой стороны АВ трапеции ABCD. Найдите площадь трапеции, если площадь треугольника MCD равна 28 см2.

5. Окружность радиуса 2 см, центр О которой лежит на гипотенузе АС прямоугольного треугольника АВС, касается его катетов. Найдите площадь треугольника АВС, если ОА= см.

1. В равнобедренный треугольник с основанием 14 см и боковой стороной 7 см вписан квадрат так, что две его вершины лежат на основании, а другие две вершины – на боковых сторонах. Найдите сторону квадрата.

2. Найдите площадь круга, вписанного в ромб с диагоналями, равными 16 см и 30 см.

3. Найдите длину медианы СР треугольника АВС, если координаты вершин треугольника А (-3;-2), В (-13;14), С(0;0).

4. Точка М является серединой боковой стороны АВ трапеции ABCD. Найдите площадь треугольника MCD, если площадь трапеции равна 38 см2.

5. Окружность радиуса 3 см, центр О которой лежит на гипотенузе АС прямоугольного треугольника АВС, касается его катетов. Найдите площадь треугольника АВС, если ОА= см.

infourok.ru

Материал по геометрии (9 класс) по теме: Контрольные работы по геометрии (9 кл.)

К — 3

Вариант  1

• 1. В  АВС,  А = 45,  В = 60, ВС = 3.

       Найдите АС.

  2. Две стороны треугольника равны 7 см  и  8 см, а

      угол между ними равен 120. Найдите третью

      сторону треугольника.

  3. В  АВС, АВ = ВС,  САВ = 30, АЕ – биссектриса,

       ВЕ = 8 см. Найдите площадь треугольника АВС.

К — 3

Вариант  1

• 1. В  АВС,  А = 45,  В = 60, ВС = 3.

       Найдите АС.

  2. Две стороны треугольника равны 7 см  и  8 см, а

      угол между ними равен 120. Найдите третью

      сторону треугольника.

  3. В  АВС, АВ = ВС,  САВ = 30, АЕ – биссектриса,

       ВЕ = 8 см. Найдите площадь треугольника АВС.

К — 3

Вариант  1

• 1. В  АВС,  А = 45,  В = 60, ВС = 3.

       Найдите АС.

  2. Две стороны треугольника равны 7 см  и  8 см, а

      угол между ними равен 120. Найдите третью

      сторону треугольника.

  3. В  АВС, АВ = ВС,  САВ = 30, АЕ – биссектриса,

       ВЕ = 8 см. Найдите площадь треугольника АВС.

К — 3

Вариант  1

• 1. В  АВС,  А = 45,  В = 60, ВС = 3.

       Найдите АС.

  2. Две стороны треугольника равны 7 см  и  8 см, а

      угол между ними равен 120. Найдите третью

      сторону треугольника.

  3. В  АВС, АВ = ВС,  САВ = 30, АЕ – биссектриса,

       ВЕ = 8 см. Найдите площадь треугольника АВС.

К — 3

Вариант  1

• 1. В  АВС,  А = 45,  В = 60, ВС = 3.

       Найдите АС.

  2. Две стороны треугольника равны 7 см  и  8 см, а

      угол между ними равен 120. Найдите третью

      сторону треугольника.

  3. В  АВС, АВ = ВС,  САВ = 30, АЕ – биссектриса,

       ВЕ = 8 см. Найдите площадь треугольника АВС.

К – 3

Вариант  2

• 1. В  СДЕ,  С = 30,  Д = 45, СЕ = 5.

       Найдите ДЕ.

  2. Две стороны треугольника равны 5 см  и  7 см, а

      угол между ними равен 60. Найдите третью

      сторону треугольника.

  3. В ромбе АВСД, АК – биссектрису угла  САВ,

      ВАД =  60, ВК  = 12 см. Найдите площадь ромба.

К – 3

Вариант  2

• 1. В  СДЕ,  С = 30,  Д = 45, СЕ = 5.

       Найдите ДЕ.

  2. Две стороны треугольника равны 5 см  и  7 см, а

      угол между ними равен 60. Найдите третью

      сторону треугольника.

  3. В ромбе АВСД, АК – биссектрису угла  САВ,

      ВАД =  60, ВК  = 12 см. Найдите площадь ромба.

К – 3

Вариант  2

• 1. В  СДЕ,  С = 30,  Д = 45, СЕ = 5.

       Найдите ДЕ.

  2. Две стороны треугольника равны 5 см  и  7 см, а

      угол между ними равен 60. Найдите третью

      сторону треугольника.

  3. В ромбе АВСД, АК – биссектрису угла  САВ,

      ВАД =  60, ВК  = 12 см. Найдите площадь ромба.

К – 3

Вариант  2

• 1. В  СДЕ,  С = 30,  Д = 45, СЕ = 5.

       Найдите ДЕ.

  2. Две стороны треугольника равны 5 см  и  7 см, а

      угол между ними равен 60. Найдите третью

      сторону треугольника.

  3. В ромбе АВСД, АК – биссектрису угла  САВ,

      ВАД =  60, ВК  = 12 см. Найдите площадь ромба.

К – 3

Вариант  2

• 1. В  СДЕ,  С = 30,  Д = 45, СЕ = 5.

       Найдите ДЕ.

  2. Две стороны треугольника равны 5 см  и  7 см, а

      угол между ними равен 60. Найдите третью

      сторону треугольника.

  3. В ромбе АВСД, АК – биссектрису угла  САВ,

      ВАД =  60, ВК  = 12 см. Найдите площадь ромба.

nsportal.ru

Контрольная работа для 9 класса на тему «Векторы»

1 вариант.

1. Начертите два неколлинеарных вектора и . Постройте векторы, равные:

а) ; б)

2. На стороне ВС ромба АВСD лежит точкаК такая, что ВК = КС, О – точка пересечения диагоналей. Выразите векторы через векторы и .

3. В равнобедренной трапеции высота делит большее основание на отрезки, равные 5 и 12 см. Найдите среднюю линию трапеции.

4.* В треугольнике АВС О – точка пересечения медиан. Выразите вектор через векторы и .

2 вариант

1. Начертите два неколлинеарных вектора и . Постройте векторы, равные:

а) ; б)

2. На стороне СD квадрата АВСD лежит точка Р такая, что СР = РD , О – точка пересечения диагоналей. Выразите векторы через векторы и

3. В равнобедренной трапеции один из углов равен 600, боковая сторона равна 8 см, а меньшее основание 7 см. Найдите среднюю линию трапеции.

4. * В треугольнике МNK О – точка пересечения медиан, . Найдите число k.

1 вариант.

1. Найдите координаты и длину вектора , если .

2. Напишите уравнение окружности с центром в точкеА (- 3;2), проходящей через точку В (0; — 2).

3. Треугольник МNK задан координатами своих вершин: М (- 6; 1), N (2; 4), К (2; — 2).

а) Докажите, что Δ— равнобедренный;

б) Найдите высоту, проведённую из вершины М.

4. * Найдите координаты точки N, лежащей на оси абсцисс и равноудалённой от точек Р и К, если Р( — 1; 3 ) и К( 0; 2 ).

2 вариант.

1). Найдите координаты и длину вектора , если .

2). Напишите уравнение окружности с центром в точке С ( 2; 1 ), проходящей через точку D ( 5; 5 ).

3). Треугольник СDЕ задан координатами своих вершин: С (2; 2), D (6; 5), Е (5; — 2).

а) Докажите, что Δ— равнобедренный;

б) Найдите биссектрису, проведённую из вершины С.

4. * Найдите координаты точки А, лежащей на оси ординат и равноудалённой от точек В и С, если В( 1; — 3 ) и С( 2; 0 ).

1 вариант

  1. В треугольнике АВС А = 450,

В = 600, ВС = Найдите АС.

  1. Две стороны треугольника равны

7 см и 8 см, а угол между ними равен 1200. Найдите третью сторону треугольника.

  1. Определите вид треугольника АВС, если

А ( 3;9 ), В ( 0; 6 ), С ( 4; 2 ).

  1. * В ΔАВС АВ = ВС, САВ = 300, АЕ – биссектриса, ВЕ = 8 см. Найдите площадь треугольника АВС.

2 вариант

  1. В треугольнике СDEС = 300,

D = 450, СЕ =Найдите DE.

  1. Две стороны треугольника равны

5 см и 7 см, а угол между ними равен 600. Найдите третью сторону треугольника.

  1. Определите вид треугольника АВС, если

А ( 3;9 ), В ( 0; 6 ), С ( 4; 2 ).

  1. * В ромбе АВСD АК – биссектриса угла САВ, ВАD = 600, ВК = 12 см. Найдите площадь ромба.

1 вариант

1. Найдите площадь круга и длину ограничивающей его окружности, если сторона правильного треугольника, вписанного в него, равна

2. Вычислите длину дуги окружности с радиусом 4 см, если её градусная мера равна 1200. Чему равна площадь соответствующего данной дуге кругового сектора?

3. Периметр правильного треугольника, вписанного в окружность, равен Найдите периметр правильного шестиугольника, описанного около той же окружности.

2 вариант

1. Найдите площадь круга и длину ограничивающей его окружности, если сторона квадрата, описанного около него, равна 6 см.

2. Вычислите длину дуги окружности с радиусом 10 см, если её градусная мера равна 1500. Чему равна площадь соответствующего данной дуге кругового сектора?

3. Периметр квадрата, описанного около окружности, равен 16 дм. Найдите периметр правильного пятиугольника, вписанного в эту же окружность.

1 вариант

1. Начертите ромб АВСD. Постройте образ этого ромба:

а) при симметрии относительно точки С;

б) при симметрии относительно прямой АВ;

в) при параллельном переносе на вектор ;

г) при повороте вокруг точки D на 600 по часовой стрелке.

2. Докажите, что прямая, содержащая середины двух параллельных хорд окружности, проходит через её центр.

3. * Начертите два параллельных отрезка, длины которых равны.начертите точку, являющуюся центром симметрии, при котором один отрезок отображается на другой.

2 вариант

1. Начертите параллелограмм АВСD. Постройте образ этого параллелограмма:

а) при симметрии относительно точки D;

б) при симметрии относительно прямой CD;

в) при параллельном переносе на вектор ;

г) при повороте вокруг точки А на 450 против часовой стрелки.

2. Докажите, что прямая, содержащая середины противоположных сторон параллелограмма, проходит через точку пересечения его диагоналей.

3.* Начертите два параллельных отрезка, длины которых равны. Постройте центр поворота, при котором один отрезок отображается на другой.

doc4web.ru

Контрольные работы по геометрии (9 класс)

Контрольная работа № 1

по геометрии 9 класс

вариант 1

1). Начертите два неколлинеарных вектора и . Постройте векторы, равные:

а). ; б).

2). На стороне ВС ромба АВСD лежит точка К такая, что ВК = КС, О – точка пересечения диагоналей. Выразите векторы через векторы и .

3). В равнобедренной трапеции высота делит большее основание на отрезки, равные 5 и 12 см. Найдите среднюю линию трапеции.

4). * В треугольнике АВС О – точка пересечения медиан. Выразите вектор через векторы и .

Контрольная работа № 1

по геометрии 9 класс

вариант 2

1). Начертите два неколлинеарных вектора и . Постройте векторы, равные:

а). ; б).

2). На стороне СD квадрата АВСD лежит точка Р такая, что СР = РD , О – точка пересечения диагоналей. Выразите векторы через векторы и .

3). В равнобедренной трапеции один из углов равен 600, боковая сторона равна 8 см, а меньшее основание 7 см. Найдите среднюю линию трапеции.

4). * В треугольнике МNK О – точка пересечения медиан, . Найдите число k.

Контрольная работа № 2

по геометрии 9 класс

вариант 1

1). Найдите координаты и длину вектора , если .

2). Напишите уравнение окружности с центром в точке А (- 3;2), проходящей через точку В (0; — 2).

3). Треугольник МNK задан координатами своих вершин: М ( — 6; 1 ), N (2; 4 ), К ( 2; — 2 ).

а). Докажите, что Δ— равнобедренный;

б). Найдите высоту, проведённую из вершины М.

4). * Найдите координаты точки N, лежащей на оси абсцисс и равноудалённой от точек Р и К, если Р( — 1; 3 ) и К( 0; 2

Контрольная работа № 2

по геометрии 9 класс

вариант 2

1). Найдите координаты и длину вектора , если .

2). Напишите уравнение окружности с центром в точке С ( 2; 1 ), проходящей через точку D ( 5; 5 ).

3). Треугольник СDЕ задан координатами своих вершин: С ( 2; 2 ), D (6; 5 ), Е ( 5; — 2 ).

а). Докажите, что Δ— равнобедренный;

б). Найдите биссектрису, проведённую из вершины С.

4). * Найдите координаты точки А, лежащей на оси ординат и равноудалённой от точек В и С, если В( 1; — 3 ) и С( 2; 0 ).

Контрольная работа № 3

по геометрии 9 класс

вариант 1

1). В треугольнике АВС А = 450,

В = 600, ВС = Найдите АС.

2). Две стороны треугольника равны

7 см и 8 см, а угол между ними равен 1200. Найдите третью сторону треугольника.

3). Определите вид треугольника АВС, если

А ( 3;9 ), В ( 0; 6 ), С ( 4; 2 ).

4). * В ΔАВС АВ = ВС, САВ = 300, АЕ – биссектриса, ВЕ = 8 см. Найдите площадь треугольника АВС.

Контрольная работа № 3

по геометрии 9 класс

вариант 2

1). В треугольнике СDE С = 300,

D = 450, СЕ = Найдите DE.

2). Две стороны треугольника равны

5 см и 7 см, а угол между ними равен 600. Найдите третью сторону треугольника.

3). Определите вид треугольника АВС, если

А ( 3;9 ), В ( 0; 6 ), С ( 4; 2 ).

4). * В ромбе АВСD АК – биссектриса угла САВ, ВАD = 600, ВК = 12 см. Найдите площадь ромба.

Контрольная работа № 4

по геометрии 9 класс

вариант 1

1). Найдите площадь круга и длину ограничивающей его окружности, если сторона правильного треугольника, вписанного в него, равна

2). Вычислите длину дуги окружности с радиусом 4 см, если её градусная мера равна 1200. Чему равна площадь соответствующего данной дуге кругового сектора?

3). Периметр правильного треугольника, вписанного в окружность, равен Найдите периметр правильного шестиугольника, описанного около той же окружности.

Контрольная работа № 4

по геометрии 9 класс

вариант 2

1). Найдите площадь круга и длину ограничивающей его окружности, если сторона квадрата, описанного около него, равна 6 см.

2). Вычислите длину дуги окружности с радиусом 10 см, если её градусная мера равна 1500. Чему равна площадь соответствующего данной дуге кругового сектора?

3). Периметр квадрата, описанного около окружности, равен 16 дм. Найдите периметр правильного пятиугольника, вписанного в эту же окружность.

Контрольная работа № 5

по геометрии 9 класс

вариант 1

1). Начертите ромб АВСD. Постройте образ этого ромба:

а). при симметрии относительно точки С;

б). при симметрии относительно прямой АВ;

в). При параллельном переносе на вектор ;

г). При повороте вокруг точки D на 600 по часовой стрелке.

2). Докажите, что прямая, содержащая середины двух параллельных хорд окружности, проходит через её центр.

3). * Начертите два параллельных отрезка, длины которых равны. начертите точку, являющуюся центром симметрии, при котором один отрезок отображается на другой.

Контрольная работа № 5

по геометрии 9 класс

вариант 2

1). Начертите параллелограмм АВСD. Постройте образ этого параллелограмма:

а). при симметрии относительно точки D;

б). при симметрии относительно прямой CD;

в). При параллельном переносе на вектор ;

г). При повороте вокруг точки А на 450 против часовой стрелки.

2). Докажите, что прямая, содержащая середины противоположных сторон параллелограмма, проходит через точку пересечения его диагоналей.

3).* Начертите два параллельных отрезка, длины которых равны. Постройте центр поворота, при котором один отрезок отображается на другой.


infourok.ru

Контрольная работа по геометрии 9 класс тема «Векторы»

Просмотр содержимого документа
«Контрольная работа по геометрии 9 класс тема «Векторы»»

Контрольная работа № 1 «Векторы на плоскости»

1 вариант

1.Даны точки Е(4;12), F(-4;-10), G(-2;6), H(4;-2). Найти:

а)координаты векторов EF,GH

б) длину вектора FG

в) координаты точки О – середины EF

г) уравнение прямой FH.

2. Дан параллелограмм АВСD . Выразите векторы , через векторы = и =.

3.Треугольник MNK задан координатами своих вершин: M(-6;1), N(2;4), K(2;-2).

а) Докажите, что треугольник MNK – равнобедренный.

б) Найдите высоту, проведенную из вершины M.

Контрольная работа № 1 «Векторы на плоскости»

2 вариант

1.Даны точки A(-2;4), B(4;-2), C(-8;-14), D(6;8). Найти:

а) координаты векторов AB,CD

б) длину вектора BC

в) координаты точки M – середины AB

г) уравнение прямой BD.

2. Дан параллелограмм АВСD . Выразите векторы , через векторы = и =.

3.Треугольник FRT задан координатами своих вершин: F(2;-2), R(2;3), T(-2;1).

а) Докажите, что треугольник FRT – равнобедренный.

б) Найдите высоту, проведенную из вершины F.

multiurok.ru

Контрольная работа по геометрии. 9 класс. Тема: Векторы

Подробности
Категория: Контрольные работы по геометрии. 9 класс

 

КОНТРОЛЬНАЯ РАБОТА ПО ГЕОМЕТРИИ

9 КЛАСС

ТЕМА: ВЕКТОРЫ

 

ВАРИАНТ 1

  1. ABCD — параллелограмм,

  K принадлежит ВС, L принадлежит AD, BK : KC = 2 : 3, AL : LD = 3 : 2. Найдите разложение вектора

  по неколлинеарным векторам 

  Ответ: 

 

  2. Дана трапеция ABCD с основаниями AD = 20 и ВС = 8, О — точка пересечения диагоналей. Разложите вектор 

 

по векторам

 

  Ответ:

 

  3. Диагонали ромба АС = а, BD = b. Точка К принадлежит BD и ВК : KD = 1 : 3. Найдите величину

  Ответ:

 

  4. В равнобедренной трапеции острый угол равен 60°, боковая сторона равна 12 см, большее основание равно 30 см. Найдите среднюю линию трапеции.

  Ответ: 24 см.

 

  5. В прямоугольнике ABCD известно, что AD = a, DC = b, O — точка пересечения диагоналей. Найдите величину

 

  Ответ:

 

 ВАРИАНТ 2

  1. ABCD — параллелограмм,

  К принадлежит ВС, L принадлежит AD, BK : KC = 3 : 4, AL : LD = 4 : 3. Найдите разложение вектора

по неколлинеарным векторам

  Ответ:

 

  2. Дана трапеция ABCD с основаниями AD = 15 и ВС = 10, О — точка пересечения диагоналей. Разложите вектор

 

по векторам

  Ответ:

 

  3. Диагонали ромба АС = а, BD = b. Точка К принадлежит АС и АК : КС = 2 : 3. Найдите величину

  Ответ: 

 

  4. В равнобедренной трапеции острый угол равен 60°, боковая сторона равна 10 см, меньшее основание равно 14 см. Найдите среднюю линию трапеции.

  Ответ: 19 см.

 

  5. В прямоугольнике ABCD известно, что АВ = а, ВС = b, О — точка пересечения диагоналей. Найдите величину

 

  Ответ:

 

metodbook.ru

Контрольная работа по геометрии 9 класс «Векторы»

Нужно рассматривать векторы с привязкой к координатам, выйдите немного за пределы программы. Кому, кроме школы нужна терминология? Нужны знания, востребованные жизнью и инженерной практикой. А в учебнике этих знаний нет. Постройте хоть один вектор по координатам, это гораздо важнее всех определений. Покажите, как измерять расстояние между точками на плоскости, как применить это для решения реальных задач. Покажите связь с формулой прямой линии, как с помощью формулы y = kx + b найти точку пересечения отрезков, векторов на плоскости. Это пригодится в век 3D технологий, а определения из «мертвого» учебника никому в жизни не нужны. Пусть попробуют доказать теорему Пифагора через использование координат, от этого хоть толк будет, так как здесь нужны знания, которые можно использовать в жизни. Именно координаты связывают геометрию с алгеброй, физикой, черчением, технологией. Не изучают в приведенных науках за ненадобностью коллинеарность и сонаправленность. Надо изучать не математику ради математики, а ее связь с другими науками. Векторы это важная тема, это шаг к матрицам, которые состоят из векторов. А без использования матриц сегодня нельзя представить ни одну науку, включая гуманитарные направления. С помощью координат многие даже олимпиадные задачи по геометрии решаются проще. Когда даете методы по теме «Векторы» из учебника, то говорите, что метод параллелограмма это ЭКВИВАЛЕНТНЫЙ метод, так как в жизни никто вектора не переносит в любую точку пространства, иначе может оказаться, что сила может быть приложена к другому объекту в пространстве, а это абсурд. Правильно говорить только о проекции векторов, все остальное с точки зрения физики приложения сил, скоростей, ускорений к объекту в пространстве смысла не имеет(не может сила одного объекта приложена к другому объекту в пространстве, если они лежат, например, на разных поверхностях). А по учебнику геометрии может — фантастика это уже другой предмет, другая область знаний.
В целом хорошо подготовленная работа.

pedsovet.org

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *