cart-icon Товаров: 0 Сумма: 0 руб.
г. Нижний Тагил
ул. Карла Маркса, 44
8 (902) 500-55-04

Неравенства примеры решения 9 класс – Основные правила решения неравенств — урок. Алгебра, 9 класс.

Содержание

Неравенства и системы неравенств. Алгебра, 9 класс: уроки, тесты, задания.

Вход на портал Вход на портал Регистрация Начало Поиск по сайту ТОПы Учебные заведения Предметы Проверочные работы Обновления Подписка Я+ Новости Переменка Отправить отзыв
  • Предметы
  • Алгебра
  • 9 класс
  1. Линейные и квадратные неравенства

  2. Рациональные неравенства

  3. Множества и операции над ними

  4. Системы рациональных неравенств

Отправить отзыв Нашёл ошибку? Сообщи нам! Copyright © 2019 ООО ЯКласс Контакты Пользовательское соглашение

www.yaklass.ru

Алгебра. Урок 8. Неравенства, системы неравенств.

 

Содержание страницы:

 

Что такое неравенство? Если взять любое уравнение и знак     =     поменять на любой из знаков неравенства:

>    больше,

≥    больше или равно,

<    меньше,

≤    меньше или равно,

то получится неравенство.

Линейные неравенства

Линейные неравенства – это неравенства вида:

ax<bax≤bax>bax≥b

где a и b — любые числа, причем a≠0,x — переменная.

Примеры линейных неравенств:

3x<5x−2≥07−5x<1x≤0

Решить линейное неравенство — получить выражение вида:

x<cx≤cx>cx≥c

где c — некоторое число.

Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.

  • Если знак неравенства строгий >,<, точка на оси будет выколотой (не закрашенной), а скобка, обнимающая точку – круглой.

Смысл выколотой точки в том, что сама точка в ответ не входит.

  • Если знак неравенства нестрогий ≥,≤, точка на оси будет жирной (закрашенной), а скобка, обнимающая точку – квадратной.

Смысл жирной точки в том, что сама точка входит в ответ.

  • Скобка, которая обнимает знак бесконечности всегда круглая – не можем мы объять необъятное, как бы нам этого ни хотелось.

Таблица числовых промежутков

Неравенство Графическое решение Форма записи ответа
x<c x∈(−∞;c)
x≤c x∈(−∞;c]
x>c x∈(c;+∞)
x≥c x∈[c;+∞)

Алгоритм решения линейного неравенства

  1. Раскрыть скобки (если они есть), перенести иксы в левую часть, числа в правую и привести подобные слагаемые. Должно получиться неравенство одного из следующих видов:

ax<bax≤bax>bax≥b

  1. Пусть получилось неравенство вида ax≤b. Для того, чтобы его решить, необходимо поделить левую и правую часть неравенства на коэффициент a.
  • Если a>0 то неравенство приобретает вид x≤ba.
  • Если a<0, то знак неравенства меняется на противоположный, неравенство приобретает вид x≥ba.
  1. Записываем ответ в соответствии с правилами, указанными в таблице числовых промежутков.

Примеры решения линейных неравенств:

№1. Решить неравенство    3(2−x)>18.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6−3x>18

−3x>18−6−3x>12|÷(−3)

Делим обе части неравенства на (-3) — коэффициент, который стоит перед  x. Так как    −3<0,  знак неравенства поменяется на противоположный. x<12−3⇒x<−4 Остается записать ответ (см. таблицу числовых промежутков).

Ответ: x∈(−∞;−4)

№2. Решить неравество    6x+4≥3(x+1)−14.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6x+4≥3x+3−14

6x−3x≥3−14−4

3x≥−15    |  ÷3 Делим обе части неравенства на (3) — коэффициент, который стоит перед  x. Так как 3>0,   знак неравенства после деления меняться не будет.

x≥−153⇒x≥−5 Остается записать ответ (см. таблицу числовых промежутков).

Ответ: x∈[−5;  +∞)

Особые случаи (в 14 задании ОГЭ 2019 они не встречались, но знать их полезно).

Примеры:

№1. Решить неравенство    6x−1≤2(3x−0,5).

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6x−1≤6x−1

6x−6x≤−1+1

0≤0

Получили верное неравенство, которое не зависит от переменной x. Возникает вопрос, какие значения может принимать переменная x, чтобы неравенство выполнялось? Любые! Какое бы значение мы ни взяли, оно все равно сократится и результат неравенства будет верным. Рассмотрим три варианта записи ответа.

      Ответ:
      1. x — любое число
      2. x∈(−∞;+∞)
      3. x∈ℝ

       

       

       

       

      №2. Решить неравенство    x+3(2−3x)>−4(2x−12).

      Решение:

      Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

      x+6−9x>−8x+48

      −8x+8x>48−6

      0>42

      Получили неверное равенство, которое не зависит от переменной x. Какие бы значения мы ни подставляли в исходное неравенство, результат окажется одним и тем же – неверное неравенство. Ни при каких значениях x исходное неравенство не станет верным. Данное неравенство не имеет решений. Запишем ответ.

      Ответ: x∈∅

      Квадратные неравенства

      Квадратные неравенства – это неравенства вида: ax2+bx+c>0ax2+bx+c≥0ax2+bx+c<0ax2+bx+c≤0 где a, b, c — некоторые числа, причем   a≠0,x — переменная.

      Существует универсальный метод решения неравенств степени выше первой (квадратных, кубических, биквадратных и т.д.) – метод интервалов. Если его один раз как следует осмыслить, то проблем с решением любых неравенств не возникнет.

      Для того, чтобы применять метод интервалов для решения квадратных неравенств, надо уметь хорошо решать квадратные уравнения (см. урок 4).

      Алгоритм решения квадратного неравенства методом интервалов

      1. Решить уравнение ax2+bx+c=0 и найти корни x1 и x2.
      1. Отметить на числовой прямой корни трехчлена.

      Если знак неравенства строгий >,<, точки будут выколотые.

      Если знак неравенства нестрогий ≥,≤, точки будут жирные (заштрихованный).

      1. Расставить знаки на интервалах. Для этого надо выбрать точку из любого промежутка (в примере взята точка A) и подставить её значение в выражение ax2+bx+c вместо x.

      Если получилось положительное число, знак на интервале плюс. На остальных интервалах знаки будут чередоваться.

      Точки выколотые, если знак неравенства строгий.

      Точки жирные, если знак неравенства нестрогий.

      Если получилось отрицательное число, знак на интервале минус. На остальных интервалах знаки будут чередоваться.

      Точки выколотые, если знак неравенства строгий.

      Точки жирные, если знак неравенства нестрогий.

      1. Выбрать подходящие интервалы (или интервал).

      Если знак неравенства > или ≥ в ответ выбираем интервалы со знаком +.

      Если знак неравенства < или ≤ в ответ выбираем интервалы со знаком -.

      1. Записать ответ.

      Примеры решения квадратных неравенств:

      №1. Решить неравенство    x2≥x+12.

      Решение:

      Приводим неравенство к виду ax2+bx+c ≥0, а затем решаем уравнение ax2+bx+c=0.

      x2≥x+12

      x2−x−12≥0

      x2−x−12=0

      a=1,b=−1,c=−12

      D=b2−4ac=(−1)2−4⋅1⋅(−12)=1+48=49

      D>0⇒ будет два различных действительных корня

      x1,2=−b±D2a=−(−1)±492⋅1=1±72=[1+72=82=41−72=−62=−3

      Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 6. Подставляем эту точку в исходное выражение:

      x2−x−1=62−6−1=29>0

      Это значит, что знак на интервале, в котором лежит точка 6 будет   +.

      Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

      В ответ пойдут два интервала. В математике для объединения нескольких интервалов используется знак объединения: ∪.

      Точки -3 и 4 будут в квадратных скобках, так как они жирные.

      Ответ:   x∈(−∞;−3]∪[4;+∞)

      №2. Решить неравенство    −3x−2≥x2.

      Решение:

      Приводим неравенство к виду ax2+bx+c ≥0, а затем решаем уравнение ax2+bx+c=0.

      −3x−2≥x2

      −x2−3x−2≥0

      −x2−3x−2=0

      a=−1,b=−3,c=−2

      D=b2−4ac=(−3)2−4⋅(−1)⋅(−2)=9−8=1

      D>0⇒ будет два различных действительных корня

      x1,2=−b±D2a=−(−3)±12⋅(−1)=3±1−2=[3+1−2=4−2=−23−1−2=2−2=−1

      x1=−2,x2=−1

      Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0. Подставляем эту точку в исходное выражение:

      −x2−3x−2=−(0)2−3⋅0−2=−2<0

      Это значит, что знак на интервале, в котором лежит точка 0 будет   −.

      Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

      Поскольку знак неравенства   ≥, выбираем в ответ интервал со знаком   +.

      Точки -2 и -1 будут в квадратных скобках, так как они жирные.

      Ответ:   x∈[−2;−1]

      №3. Решить неравенство   4<x2+3x.

      Решение:

      Приводим неравенство к виду ax2+bx+c ≥0, а затем решаем уравнение ax2+bx+c=0.

      4<x2+3x

      −x2−3x+4<0

      −x2−3x+4=0

      a=−1,b=−3,c=4

      D=b2−4ac= (−3)2−4⋅(−1)⋅4=9+16=25

      D>0⇒ будет два различных действительных корня

      x1,2=−b±D2a=−(−3)±252⋅(−1)=3±5−2=[3+5−2=8−2=−43−5−2=−2−2=1

      x1=−4,x2=1

      Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение:

      −x2−3x+4=−(2)2−3⋅2+4=−6<0

      Это значит, что знак на интервале, в котором лежит точка 2, будет   -.

      Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

      Поскольку знак неравенства   <,  выбираем в ответ интервалы со знаком   −.

      Точки -4 и 1 будут в круглых скобках, так как они выколотые.

      Ответ:   x∈(−∞;−4)∪(1;+∞)

      №4. Решить неравенство   x2−5x<6.

      Решение:

      Приводим неравенство к виду ax2+bx+c ≥0, а затем решаем уравнение ax2+bx+c=0.

      x2−5x<6

      x2−5x−6<0

      x2−5x−6=0

      a=1,b=−5,c=−6

      D=b2−4ac=(−5)2−4⋅1⋅(−6)=25+25=49

      D>0⇒ будет два различных действительных корня

      x1,2=−b±D2a=−(−5)±492⋅1=5±72=[5+72=122=65−72=−22=−1

      x1=6,x2=−1

      Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 10. Подставляем эту точку в исходное выражение:

      x2−5x−6=102−5⋅10−6=100−50−6= 44>0

      Это значит, что знак на интервале, в котором лежит точка 10 будет   +.

      Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

      Поскольку знак неравенства   >, выбираем в ответ интервал со знаком   -.

      Точки -1 и 6 будут в круглых скобках, так как они выколотые

      Ответ:   x∈(−1;6)

      №5. Решить неравенство   x2<4.

      Решение:

      Переносим 4 в левую часть, раскладываем выражение на множители по ФСУ и находим корни уравнения.

      x2<4

      x2−4<0

      x2−4=0

      (x−2)(x+2)=0⇔[x−2=0x+2=0 [x=2x=−2

      x1=2,x2=−2

      Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 3. Подставляем эту точку в исходное выражение:

      x2−4=32−4=9−4=5>0

      Это значит, что знак на интервале, в котором лежит точка 3 будет   +.

      Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

      Поскольку знак неравенства   <,   выбираем в ответ интервал со знаком   −.

      Точки -2 и 2 будут в круглых скобках, так как они выколотые.

      Ответ:   x∈(−2;2)

      №6. Решить неравенство   x2+x≥0.

      Решение:

      Выносим общий множитель за скобку, находим корни уравнения   x2+x=0.

      x2+x≥0

      x2+x=0

      x(x+1)=0⇔[x=0x+1=0[x=0x=−1

      x1=0,x2=−1

      Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 1. Подставляем эту точку в исходное выражение:

      x2+x=12+1=2>0

      Это значит, что знак на интервале, в котором лежит точка 1 будет   +.

      Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

      Поскольку знак неравенства   ≥,  выбираем в ответ интервалы со знаком   +.

      В ответ пойдут два интервала. Точки -1 и 0 будут в квадратных скобках, так как они жирные.

      Ответ:   x∈(−∞;−1]∪[0;+∞)

      Вот мы и познакомились с методом интервалов. Он нам еще пригодится при решении дробно рациональных неравенств, речь о которых пойдёт ниже.

      Дробно рациональные неравенства

      Дробно рациональное неравенство – это неравенство, в котором есть дробь, в знаменателе которой стоит переменная, т.е. неравенство одного из следующих видов:

      f(x)g(x)<0f(x)g(x)≤0f(x)g(x)>0f(x)g(x)≥0

      Дробно рациональное неравенство не обязательно сразу выглядит так. Иногда, для приведения его к такому виду, приходится потрудиться (перенести слагаемые в левую часть, привести к общему знаменателю).

      Примеры дробно рациональных неравенств:

      x−1x+3<03(x+8)≤5×2−1x>0x+20x≥x+3

      Как же решать эти дробно рациональные неравенства? Да всё при помощи того же всемогущего метода интервалов.

      Алгоритм решения дробно рациональных неравенств:

      1. Привести неравенство к одному из следующих видов (в зависимости от знака в исходном неравенстве):

      f(x)g(x)<0f(x)g(x)≤0f(x)g(x)>0f(x)g(x)≥0

      1. Приравнять числитель дроби к нулю   f(x)=0.  Найти нули числителя.
      1. Приравнять знаменатель дроби к нулю   g(x)=0.  Найти нули знаменателя.

      В этом пункте алгоритма мы будем делать всё то, что нам запрещали делать все 9 лет обучения в школе – приравнивать знаменатель дроби к нулю. Чтобы как-то оправдать свои буйные действия, полученные точки при нанесении на ось x будем всегда рисовать выколотыми, вне зависимости от того, какой знак неравенства.

      1. Нанести нули числителя и нули знаменателя на ось x.

      Вне зависимости от знака неравенства
      при нанесении на ось xнули знаменателя всегда выколотые.

      Если знак неравенства строгий,
      при нанесении на ось x нули числителя выколотые.

      Если знак неравенства нестрогий,
      при нанесении на ось x нули числителя жирные.

      1. Расставить знаки на интервалах.
      1. Выбрать подходящие интервалы и записать ответ.

      Примеры решения дробно рациональных неравенств:

      №1. Решить неравенство   x−1x+3>0.

      Решение:

      Будем решать данное неравенство в соответствии с алгоритмом.

      1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду  f(x)g(x)>0.
      1. Приравниваем числитель к нулю  f(x)=0.

      x−1=0

      x=1 — это ноль числителя. Поскольку знак неравенства строгий, ноль числителя при нанесени на ось x будет выколотым. Запомним это.

      1. Приравниваем знаменатель к нулю  g(x)=0.

      x+3=0

      x=−3 — это ноль знаменателя. При нанесении на ось x точка будет всегда выколотой (вне зависимости от знака неравенства).

      1. Наносим нули числителя и нули знаменателя на ось x.

      При нанесении нулей числителя обращаем внимание на знак неравенства. В данном случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя выколоты всегда.

      1. Расставляем знаки на интервалах.

      Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение f(x)g(x):x−1x+3 = 2−12+3=15>0,

      Это значит, что знак на интервале, в котором лежит точка 2 будет   +.

      Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

      1. Выбираем подходящие интервалы и записываем ответ.

      Поскольку знак неравенства   >,  выбираем в ответ интервалы со знаком   +.

      В ответ пойдут два интервала. Точки -3 и 1 будут в круглых скобках, так как обе они выколотые.

      Ответ:   x∈(−∞;−3)∪(1;+∞)

      №2. Решить неравенство   3(x+8)≤5.

      Решение:

      Будем решать данное неравенство в соответствии с алгоритмом.

      1. Привести неравенство к виду  f(x)g(x)≤0.

      3(x+8)≤5

      3(x+8)−5\x+8≤0

      3x+8−5(x+8)x+8≤0

      3−5(x+8)x+8≤0

      3−5x−40x+8≤0

      −5x−37x+8≤0

      1. Приравнять числитель к нулю  f(x)=0.

      −5x−37=0

      −5x=37

      x=−375=−375=−7,4

      x=−7,4 — ноль числителя. Поскольку знак неравенства нестрогий, при нанесении этой точки на ось x точка будет жирной.

      1. Приравнять знаменатель к нулю  g(x)=0.

      x+8=0

      x=−8 — это ноль знаменателя. При нанесении на ось x, точка будет всегда выколотой (вне зависимости от знака неравенства).

      1. Наносим нули числителя и нули знаменателя на ось x.

      При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства нестрогий, значит нули числителя будут жирными. Ну а нули знаменателя выколоты всегда.

      1. Расставляем знаки на интервалах.

      Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0. Подставляем эту точку в исходное выражение  f(x)g(x):

      −5x−37x+8=−5⋅0−370+8=−378<0

      Это значит, что знак на интервале, в котором лежит точка 0 будет   -.

      Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

      1. Выбираем подходящие интервалы и записываем ответ.

      Поскольку знак неравенства   ≤,  выбираем в ответ интервалы со знаком   -.

      В ответ пойдут два интервала. Точка -8 будет в круглой скобке, так как она выколотая, точка -7,4 будет в квадратных скобках, так как она жирная.

      Ответ:   x∈(−∞;−8)∪[−7,4;+∞)

      №3. Решить неравенство   x2−1x>0.

      Решение:

      Будем решать данное неравенство в соответствии с алгоритмом.

      1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду  f(x)g(x)>0.
      1. Приравнять числитель к нулю  f(x)=0.

      x2−1=0

      (x−1)(x+1)=0⇒[x−1=0x+1=0[x=1x=−1

      x1=1,x2=−1  — нули числителя. Поскольку знак неравенства строгий, при нанесении этих точек на ось x точки будут выколотыми.

      1. Приравнять знаменатель к нулю g(x)=0.

      x=0 — это ноль знаменателя. При нанесении на ось x, точка будет всегда выколотой (вне зависимости от знака неравенства).

      1. Наносим нули числителя и нули знаменателя на ось x.

      При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя и так выколоты всегда.

      1. Расставляем знаки на интервалах.

      Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение  f(x)g(x):

      x2−1x=22−12=4−12=32>0, Это значит, что знак на интервале, в котором лежит точка 2, будет   +.

      Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

      1. Выбираем подходящие интервалы и записываем ответ.

      Поскольку знак неравенства   >,  выбираем в ответ интервалы со знаком   +.

      В ответ пойдут два интервала. Все точки будут в круглых скобках, так как они выколотые.

      Ответ:   x∈(−1;0)∪(1;+∞)

      Системы неравенств

      Системой неравенств называют два неравенства с одной неизвестной, которые объединены в общую систему фигурной скобкой.

      Пример системы неравенств:

      {x+4>02x+3≤x2

      Алгоритм решения системы неравенств

      1. Решить первое неравенство системы, изобразить его графически на оси x.
      1. Решить второе неравенство системы, изобразить его графически на оси x.
      1. Нанести решения первого и второго неравенств на ось x.
      1. Выбрать в ответ те участки, в которых решение первого и второго неравенств пересекаются. Записать ответ.

      Примеры решений систем неравенств:

      №1. Решить систему неравенств   {2x−3≤57−3x≤1

      Решение:

      Будем решать данную систему неравенств в соответствии с алгоритмом.

      1. Решаем первое неравенство системы.

      2x−3≤5 

      2x≤8|÷2, поскольку  2>0,  знак неравенства после деления сохраняется.

      x≤4;

      Графическая интерпретация:

      Точка 4 на графике жирная, так как знак неравенства нестрогий.

      1. Решаем второе неравенство системы.

      7−3x≤1

      −3x≤1−7

      −3x≤−6|÷(−3),  поскольку  −3<0,  знак неравенства после деления меняется на противоположный.

      x≥2

      Графическая интерпретация решения:

      Точка 2 на графике жирная, так как знак неравенства нестрогий.

      1. Наносим оба решения на ось x.
      1. Выбираем подходящие участки и записываем ответ.

      Пересечение решений наблюдается на отрезке от 2 до 4. Точки 2 и 4 в ответе буду в квадратных скобках, так как обе они жирные.

      Ответ:   x∈[2;4]

      №2. Решить систему неравенств   {2x−1≤51<−3x−2

      Решение:

      Будем решать данную систему неравенств в соответствии с алгоритмом.

      1. Решаем первое неравенство системы.

      2x−1≤5

      2x≤6|÷2, поскольку  2>0,  знак неравенства после деления сохраняется.

      x≤3

      Графическая интерпретация:

      Точка 3 на графике жирная, так как знак неравенства нестрогий.

      1. Решаем второе неравенство системы.

      1<−3x−2

      3x<−1−2

      3x<−3|÷3,  поскольку  3>0,  знак неравенства после деления сохраняется.

      x<−1

      Графическая интерпретация решения:

      Точка -1 на графике выколотая, так как знак неравенства строгий.

      1. Наносим оба решения на ось x.
      1. Выбираем подходящие участки и записываем ответ.

      Пересечение решений наблюдается на самом левом участке. Точка -1 будет в ответе в круглых скобках, так как она выколотая.

      Ответ:   x∈(−∞;−1)

      №3. Решить систему неравенств   {3x+1≤2x−1x−7>5−x

      Решение:

      Будем решать данную систему неравенств в соответствии с алгоритмом.

      1. Решаем первое неравенство системы.

      3x+1≤2x−1

      3x−2x≤−1−1

      x≤−1

      Графическая интерпретация решения:

      1. Решаем второе неравенство системы

      x−7>5−x

      x+x>5+7

      2x>12| ÷2,  поскольку  2>0,  знак неравенства после деления сохраняется.

      x>6

      Графическая интерпретация решения:

      1. Наносим оба решения на ось x.
      1. Выбираем подходящие участки и записываем ответ.

      Пересечений решений не наблюдается. Значит у данной системы неравенств нет решений.

      Ответ:   x∈∅

      №4. Решить систему неравенств   {x+4>02x+3≤x2

      Решение:

      Будем решать данную систему неравенств в соответствии с алгоритмом.

      1. Решаем первое неравенство системы.

      x+4>0

      x>−4

      Графическая интерпретация решения первого неравенства:

      1. Решаем второе неравенство системы

      2x+3≤x2

      −x2+2x+3≤0

      Решаем методом интервалов.

      −x2+2x+3=0

      a=−1,b=2,c=3

      D=b2−4ac=22−4⋅(−1)⋅3=4+12=16

      D>0 — два различных действительных корня.

      x1,2=−b±D2a=−2±162⋅(−1)=−2±4−2=[−2−4−2=−6−2=3−2+4−2=2−2=−1

      Наносим точки на ось x и расставляем знаки на интервалах. Поскольку знак неравенства нестрогий, обе точки будут заштрихованными.

      Графическая интерпретация решения второго неравенства:

      1. Наносим оба решения на ось x.
      1. Выбираем подходящие участки и записываем ответ.

      Пересечение решений наблюдается в двух интервалах. Для того, чтобы в ответе объединить два интервала, используется знак объединения  ∪.

      Точка -4 будет в круглой скобке, так как она выколотая, а точки -1 и 3 в квадратных, так как они жирные.

      Ответ:   x∈(−4;−1]∪[3;+∞)

       

      Скачать домашнее задание к уроку 8.

       

      epmat.ru

      Алгебра 7-9 классы. 26. Линейные неравенства. Решение линейных неравенств

      Алгебра 7-9 классы. 26. Линейные неравенства. Решение линейных неравенств

      Подробности
      Категория: Алгебра 7-9 классы

       

       

       РЕШЕНИЕ ЛИНЕЙНЫХ НЕРАВЕНСТВ

       

      Свойства числовых равенств помогали нам решать уравнения, т. е. находить те значения переменной, при которых уравнение обращается в верное числовое равенство. Точно так же свойства числовых неравенств помогут нам решать неравенства с переменной, т. е. находить те значения переменной, при которых неравенство с переменной обращается в верное числовое неравенство. Каждое такое значение переменной называют обычно решением неравенства с переменной.

       

      Рассмотрим, например, неравенство

      2х + 5 < 7.

      Подставив вместо х значение 0, получим 5 < 7 — верное неравенство; значит, х = 0 — решение данного неравенства. Подставив вместо х значение 1, получим 7 < 7 — неверное неравенство; поэтому х = 1 не является решением данного неравенства. Подставив вместо х значение -3, получим -6 + 5 < 7, т.е. — 1 < 7 — верное неравенство; следовательно, х = -3 — решение данного неравенства. Подставив вместо х значение 2,5, получим 2 — 2,5 + 5 < 7, т. е. 10 < 7 — неверное неравенство. Значит, х = 2,5 не является решением неравенства.

       

      Но вы же понимаете, что это — тупиковый путь: ни один математик не станет так решать неравенство, ведь все числа невозможно перебрать! Вот тут-то и нужно использовать свойства числовых неравенств, рассуждая следующим образом.

      Нас интересуют такие числа х, при которых 2х + 5 < 7 — верное числовое неравенство. Но тогда и 2х + 5 — 5< 7 — 5 — верное неравенство (согласно свойству 2: к обеим частям неравенства прибавили одно и то же число — 5). Получили более простое неравенство 2х < 2. Разделив обе его части на положительное число 2, получим (на основании свойства 3) верное неравенство х < 1.

      Что это значит? Это значит, что решением неравенства является любое число х, которое меньше 1. Эти числа заполняют открытый луч (-∞, 1). Обычно говорят, что этот луч — решение неравенства 2х + 5 < 7 (точнее было бы говорить о множестве решений, но математики, как всегда, экономны в словах). Таким образом, можно использовать два варианта записи решений данного неравенства: х < 1 или (-∞, 1).

      Свойства числовых неравенств позволяют руководствоваться при решении неравенств следующими правилами:

       

      Правило 1. Любой член неравенства можно перенести из одной части неравенства в другую с противоположным знаком, не изменив при этом знак неравенства.

      Правило 2. Обе части неравенства можно умножить или разделить на одно и то же положительное число, не изменив при этом знак неравенства.

       

      Правило 3. Обе части неравенства можно умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный.

       

      Применим эти правила для решения линейных неравенств, т. е. неравенств, сводящихся к виду ах + b > 0 (или ах + b < 0),

      где а и b — любые числа, за одним исключением: а ≠ 0.

      Пример 1.

      Решить неравенство Зх — 5 ≥ 7х — 15.

      Р е ш е н и е.

      Перенесем член в левую часть неравенства, а член — 5 — в правую часть неравенства, не забыв при этом изменить знаки и у члена , и у члена -5 (руководствуемся правилом 1). Тогда получим

      Зх — 7х ≥ — 15 + 5, т. е. — 4х ≥ — 10.

      Разделим обе части последнего неравенства на одно и то же отрицательное число — 4, не забыв при этом перейти к неравенству противоположного смысла (руководствуясь правилом 3). Получим х < 2,5. Это и есть решение заданного неравенства.

      Как мы условились, для записи решения можно использовать обозначение соответствующего промежутка числовой прямой: (-∞, 2,5].

      О т в е т: х < 2,5, или (-∞, 2,5].

       

      Для неравенств, как и для уравнений, вводится понятие равносильности. Два неравенства f(x) < g(x) и r(x) < s(x) называют равносильными, если они имеют одинаковые решения (или, в частности, если оба неравенства не имеют решений).

      Обычно при решении неравенства стараются заменить данное неравенство более простым, но равносильным ему. Такую замену называют равносильным преобразованием неравенства. Эти преобразования как раз и указаны в сформулированных выше правилах 1—3.

       

      Пример 2.

      Решить неравенство

      Р е ш е н и е.

      Умножим обе части неравенства на положительное число 15, оставив знак неравенства без изменения (правило 2), Это позволит нам освободиться от знаменателей, т. е. перейти к более простому неравенству, равносильному данному:

      Воспользовавшись для последнего неравенства правилом 1, получим равносильное ему более простое неравенство:

       

      Наконец, применив правило 3, получим

      О т в е т: или

       

      В заключение заметим, что, используя свойства числовых неравенств, мы, конечно, сможем решить не любое неравенство с переменной, а только такое, которое после ряда простейших преобразований (типа тех, что были выполнены в примерах из этого параграфа) принимает вид ах > b (вместо знака > может быть, разумеется, любой другой знак неравенства, строгого или нестрогого).

       

      forkettle.ru

      Методическая разработка по алгебре (9 класс) на тему: Квадратные неравенства. Повторение.

      Тема урока: «Квадратные неравенства» (Повторение).

      Цели урока: обобщить знания обучающихся о приёмах решения квадратных неравенств, совершенствовать навыки работы с алгоритмом при решении квадратных неравенств.

      План урока:

      1.Организационный момент.

      2.Объявление темы урока, постановка цели.

      3. Повторение теоретического материала.

      4. Выполнение тренировочных заданий.

      5. «Маленький тест».

      6. Задание на дом.

      7. Подведение итогов урока.

      Ход урока.

      1. Организационный момент урока.

      2. Объявление темы «Квадратные неравенства». Постановка цели на урок.

      Актуализация знаний обучающихся.

      3. Повторение теоретического материала.

      Определение: неравенства вида ax²+bx+c>0  и  ax²+bx+cгде х – переменна, a,b,c – некоторые числа, причём а ≠ 0, называют квадратными неравенствами .

      Составим алгоритм решения квадратных неравенств

      Алгоритм решения квадратного неравенства:

      1) Рассмотреть функцию    у = ах2 + bx +c.

      2) Найти нули функции, если они есть.

      3) Определить направление ветвей параболы.

           4) Схематично построить график данной функции.

           5) Учитывая знак неравенства, выписать ответ.

      Рассмотрим пример: х2 –х-6>0. Решаем согласно алгоритму:

      У= х2 – х – 6

       х2– х – 6=0

      D= 1 – 4 (-6)=25

      Х1=3    х2= -2

      а=1>0 ветви направлены в верх.

      Ответ: (-∞;-2)U(3;+∞)

      Рассмотрим также неравенства меняя знак неравенства, следует обратить внимание на то как меняется ответ, в зависимости отрабочей плоскости и построения чертежа.

      4. Выполнение тренировочных заданий.

      Выполнение заданий  на доске, с комментариями. Обучающие сами выбирают какие из предложенных заданий выполнить в первую очередь, выяснить какие из заданий представляются сложными и требующими внимания и помощи учителя.

      Тренировочные задания:
      а) х² + 4х – 21 0;

        в) -х² + 6х + 7

       д) (х-2)² > 4 — х²;        е) 0,5х² — 8 ≥ 0;

       ж) 9 ≤ х²;                     з)  3х² -10х + 4

      5. «Маленький тест».

      Рефлексия. Проверить устойчивость навыка работы при решении квадратного неравенства.

      6. Домашнее задание.

      Выполнить решение Варианта№18 из сборника по подготовке к ГИА.

      7. Подведение итогов урока.

      nsportal.ru

      Готовимся к экзамену по математике за период обучения на II ступени общего среднего образования: 13. Системы неравенств

      МАТЕРИАЛ ДЛЯ ПОВТОРЕНИЯ

      Если ставится задача найти множество общих решений двух или более неравенств, то говорят, что надо решить систему неравенств.

      Неравенства, входящие в систему, объединяются фигурной скобкой. Иногда системы неравенств записывают в виде двойного неравенства:

      -5<x<12 или 
      Решением системы неравенств называется число, которое при его подстановке в систему обращает каждое неравенство в верное числовое неравенство.
      Решить систему неравенств – значит найти решения для всей системы, либо доказать, что у данной системы решений нет.

      Чтобы решить систему неравенств с одной переменной, надо:

      1) отдельно решить каждое неравенство;

      2) найти пересечение найденных решений, отметив решение каждого неравенства на числовой прямой.

      Это пересечение и является множеством решений системы неравенств.

      Пример:
      Решить систему неравенств:
      Решим каждое неравенство в отдельности
      1) 5x-x2≥0,
      5x-x2=0,
      x(5-x)=0,
      x=0 или 5-x=0,
      -x=-5,
      x=5.
      Находим решение с помощью метода интервалов:
      2) 6-2x<-2,
      -2x<-2-6,
      -2x<-8,
      x>-8:(-2),
      x>4.

      Объединим оба решения:

      Ответ: (4; 5].
      Говорят, что несколько неравенств с одной переменной образуют совокупность, если необходимо найти все такие значения переменной, каждое из которых является решением хотя бы одного из данных неравенств. Совокупность неравенств обозначается квадратной скобкой.

      Решением совокупности неравенств называют такие значения переменной, которые являются верными хотя бы для одного из этих неравенств.

      Чтобы решить совокупность неравенств с одной переменной, надо:

      1) отдельно решить каждое неравенство;

      2) найти объединение найденных решений, отметив решение каждого неравенства на числовой прямой.

      Это объединение и является решением совокупности неравенств.

      Пример:
      Решить совокупность неравенств:


      Решим каждое неравенство в отдельности
      1) 5х+6≤1,
           5х≤ -5,
           х≤ -1.

      2) 2х+1≥3,
          2х≥2,
          х≥1.

      Объединим оба решения:

      Ответ: (-∞; -1]U[1;+∞).



      УПРАЖНЕНИЯ

      1. Решите систему неравенств:
      Решение:
      а)
      Ответ: (5; 7]



      2. Решите систему неравенств:
      Решение:

      Ответ: (1; 10].




      3. Найдите целые решения системы неравенств:
      Решение:
      а)
      Ответом являются все целые числа, которые принадлежат промежутку (-15; 5).
      Ответ: -14; -13; -12; -11; -10; -9; -8; -7; -6.



      4. Решите систему неравенств:
      Решение:
      Ответ: (-1; 3).



      5. Решите систему неравенств:
      Решение:
      Ответ: (-1;2).



      6. Решите систему неравенств:
      Решение:
      Ответ: нет решений.



      7. Решите систему неравенств:

      Решение:

      Ответ: (0; +∞).


      8. Решите неравенство:

      а) -2<3x+5≤10;    б) 2<4x+6≤12.

      Решение:

      Ответ: (-2 1/3; 1 2/3].



      9. Решите систему неравенств:
      Решение:
      Ответ: [0,4; 0,5).



      10. Решите систему неравенств (№ 3.4.52 [7]):
      Решение:
      Ответ: (-1; 2).



      11. Решите систему неравенств:
      Решение:
      Ответ: [-9; 3)U(3; 9].



      12. Решите систему неравенств:
      Решение:




      Ответ: (-7; -6)U(1;7).



      13. Решите систему неравенств:
      Решение:
      Ответ: (2; 4).



      14. Решите систему неравенств:

      Решение:

      Ответ: (-7; -2)U(0; 2).


      ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

      1. Решите систему неравенств:

      2. Решите систему неравенств:

      3. Решите систему неравенств:

      4. Решите систему неравенств:

      5. Решите систему неравенств:

      6. Решите систему неравенств:

      7. Решите систему неравенств:

      8. Решите систему неравенств:

      9. Решите систему неравенств:

      10. Решите систему неравенств:


      Проверь себя


      mathembs.blogspot.com

      Решение уравнений и неравенств. 9-й класс

      Разделы: Математика


      Тип урока: урок обобщения знаний.

      Цели урока:

      1. Систематизировать и повторить из курса 8-9 классов способы решения уравнений и неравенств.
      2. Развивать аналитическое мышление и эстетическое чувство.
      3. Побуждение к самостоятельному выбору методов решения.

      Оборудование: проектор, экран.

      Ход урока

      1. Организационный момент (2-3 минуты).

      2. Устный счет.

      Решить:

      1) Уравнения:   2) Неравенства
      а) х2 – 7 = 0   а) х2 – 9 < 0
      б) 2х2 + 10х = 0   б) х2 – 25 > 0
      в) 3х2 + 300 = 0   в) х2 ≥ 10
      г) х2 + 3х – 40 = 0   г) 10х2 ≤ 20
      д) х2 – 9х + 20 = 0   д) х2 – 20х > 0
      е) х2 + 11х – 12 = 0   е) (х+1)(х – 3) < 0

      Как решаются квадратные уравнения и неравенства второй степени?

      3. Решение уравнений и неравенств с классом.

      Повторим решение дробно-рациональных уравнений, биквадратных/.

      №1.

      1 – посторонний корень.

      Ответ: 2.

      №2.

      х4 – 10х2 + 1 = 0

      Пусть у = х2

      у2 – 10у + 1 = 0

      №3.

      2 – 2х + 8 < 0 | Ч (-1)

      х2 + 2х – 8 > 0

      1-й способ (методом интервалов).

      х2 + 2х – 8 = 0

      х1 = -4; х2 = 2 по теореме Виета.

      Ответ: (-∞;-4) U (2;+∞).

      2-ой способ (с помощью параболы).

      Ответ: (-∞;-4) U (2;+∞).

      4. Самостоятельная работа (на экране) с проверкой в классе.

      1.

      2.

      3. х6 – 9х3 + 8 = 0

      4. 3х2 – х + 1 < 0

      5. х2 – 5х ≤ -4

      Сверим ответы:

      1 2 3 4 5
      1; 2 Решения нет. [1;4]

      5. Домашнее задание:

      1.

      2. х4 – 4х3 + 5х2 – 4х + 1 = 0

      3.

      19.10.2012

      Поделиться страницей:

      xn--i1abbnckbmcl9fb.xn--p1ai

      Рациональные неравенства. Алгебра, 9 класс: уроки, тесты, задания.

      1. Рациональное неравенство (знаменатель — число)

      Сложность: лёгкое

      2
      2. Числа, которые являются решением дробного неравенства

      Сложность: лёгкое

      3
      3. Замена рационального неравенства системами неравенств

      Сложность: лёгкое

      1
      4. Рациональное неравенство (линейное уравнение)

      Сложность: среднее

      3
      5. Рациональное неравенство (общий знаменатель)

      Сложность: среднее

      3
      6. Рациональное неравенство (неполный квадратный трёхчлен)

      Сложность: среднее

      4
      7. Рациональное неравенство (три множителя)

      Сложность: среднее

      4
      8. Дробное рациональное неравенство (знаменатель — бином)

      Сложность: среднее

      5
      9. Дробь и единица

      Сложность: среднее

      5
      10. Дробное рациональное неравенство (знаменатель — неполный квадратный трёхчлен)

      Сложность: среднее

      6
      11. Дробное рациональное неравенство (разность квадратов)

      Сложность: сложное

      8
      12. Дробное рациональное неравенство (теорема Виета)

      Сложность: сложное

      7
      13. Значения выражения, переменная x

      Сложность: сложное

      2

      www.yaklass.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *