Как упростить выражение 7 класс алгебра примеры – Как упрощать выражения по алгебре 7 класс
7 класс. Алгебра
Рубрика «7 класс. Алгебра»
I. Чтобы умножить одночлен на многочлен, надо умножить на этот одночлен каждый член многочлена и полученные произведения сложить.
Пример 1. Умножить одночлен на многочлен: 2a·(4a2-0,5ab+5a3).
Решение. Одночлен 2а будем умножать на каждый одночлен многочлена:
2a·(4a2-0,5ab+5a3)=2a∙4a2+2a∙(-0,5ab)+2a∙5a3=8a3-a2b+10a4. Запишем полученный многочлен в стандартном виде:
Пример 2. Умножить многочлен на одночлен: (3xyz5-4,5x2y+6xy3+2,5y2z)∙(-0,4x3).
Решение. Каждое слагаемое, стоящее в скобках, умножаем на одночлен (-0,4x3).
(3xyz5-4,5x2y+6xy3+2,5y2z)∙(-0,4x3)=
=3xyz5∙(-0,4x3) -4,5x2y∙(-0,4x3)+6xy3∙(-0,4x3)+2,5y2z∙(-0,4x3)=
=-1,2x4yz5+1,8x5y-2,4x4y3-x3y2z.
II. Представление многочлена в виде произведения двух или нескольких многочленов называется разложением многочлена на множители.
III. Вынесение общего множителя за скобки – простейший способ разложения многочлена на множители.
Пример 3. Разложить на множители многочлен: 5a3+25ab-30a2.
Решение. Вынесем общий множитель всех членов многочлена за скобки. Это одночлен 5а, потому что на 5а делится каждый из членов данного многочлена. Итак, 5а мы запишем перед скобками, а в скобках запишем частные от деления каждого одночлена на 5а.
5a3+25ab-30a2=5a·(a2+5b-6a). Проверяем себя: если мы умножим 5а на многочлен в скобках a2+5b-6a, то получим данный многочлен 5a3+25ab-30a2.
Пример 4.Вынесите общий множитель за скобки: (x+2y)2-4·(x+2y).
Решение. (x+2y)2-4·(x+2y)=
Общим множителем здесь являлся двучлен (х+2у). Мы вынесли его за скобки, а в скобках записали частные от деления данных членов (x+2y)2 и -4·(x+2y) на их общий делитель
(х+2у). В результате мы представили данный многочлен в виде произведения двух многочленов (x+2y) и (x+2y-4), другими словами, мы разложили многочлен (x+2y)2-4·(x+2y) на множители. Ответ: (x+2y)(x+2y-4).
IV. Чтобы умножить многочлен на многочлен, нужно каждый член одного многочлена умножить на каждый член другого многочлена и записать полученные произведения в виде суммы одночленов. При необходимости привести подобные слагаемые.
Пример 5. Выполнить умножение многочленов: (4x2-6xy+9y2)(2x+3y).
Решение.
По правилу мы должны каждый член первого многочлена (4x2-6xy+9y2) умножить на каждый член второго многочлена (2x+3y). Чтобы не запутаться, делайте всегда так: сначала умножьте каждый член первого многочлена на 2х, потом опять каждый член первого многочлена умножайте на 3у.(4x2-6xy+9y2)(2x+3y)=4x2∙2x-6xy∙2x+9y2∙2x+4x2∙3y-6xy∙3y+9y2∙3y=
=8x3-12x2y+18xy2+12x2y-18xy2+27y3=8x3+27y3.
Подобные слагаемые -12x2y и 12x2y, а также 18xy2 и -18xy2 оказались противоположными, их суммы равны нулю.
Ответ: 8x3+27y3.
I.
Например, многочлен 2a+3a2b-6b4+3,5a3b состоит из суммы четырех одночленов.
II. Двучлен – это многочлен, состоящий из двух членов (одночленов).
Примеры двучленов: 2a-3b; 6x2+5; 2x-1.
III. Трехчлен – это многочлен, состоящий из трех членов (одночленов).
Например, 2а+3с-х или x2+4x-5 — трехчлены, так как состоят из трех одночленов.
IV. Степенью многочлена называют наибольшую из степеней входящих в него одночленов.
Например, многочлен 2a2-3b+abc-d2 имеет третью степень, так как наибольшей степенью входящих в него одночленов является третья степень одночлена abc (складываем показатели: 1+1+1=3).
Многочлен 4x4yz+2x2y3-xz4+3x2y2 имеет шестую степень, так как наибольшей (шестой) степенью является степень его члена 4x4yz (складываем показатели: 4+1+1=6).
V. Многочлен стандартного вида не содержит подобных членов и записан в порядке убывания степеней его членов.
Например, приведенный выше многочлен 4x4yz+2x2y3-xz4+3x2y2 является многочленом стандартного вида, так как записан в порядке убывания степеней его членов.
Пример 1. Упростить многочлен, записав каждый его член в стандартном виде: 4aabb∙(-0,5c2)+5a2bb3-6abcab
Решение.
4aabb∙(-0,5c2)+5a2bb3-6abcab2c=-2a2b2c2+5a2b4-6a2b3c2, а теперь запишем этот многочлен в стандартном виде (в порядке убывания степеней его членов):
-6a2b3c2-2a2b2c2+5a2b4.
Пример 2. Вычислить значение многочлена 5y2-3xy+x2при x=-1, y=2.
Решение.
5y2-3xy+x2=5∙22-3∙(-1)∙2+(-1)2=5∙4+6+1=27.
Пример 3. Упростить многочлен 2aba-a3bb+7bbbb и найти его числовое значение при a=3, b=2.
Решение.
Упрощаем многочлен: 2aba-a 3bb+7bbbb=2a2b-a3b2+7b4.
Подставляем значения a и b.
2a2b-a3b2+7b4=2∙32∙2-33∙22+7∙24=2∙9∙2-27∙4+7∙16=36-108+112=40.
Пример 4. Привести подобные члены многочлена:
Пример 5. Привести к стандартному виду многочлен:
Напоминание: подобными считают одночлены, имеющие одинаковую буквенную часть.
I. Выражения, которые составлены из чисел, переменных и их степеней, при помощи действия умножения называются одночленами.
Примеры одночленов:
а) a; б) ab; в)
II. Такой вид одночлена, когда на первом месте стоит числовой множитель (коэффициент), а за ним переменные с их степенями, называют стандартным видом одночлена.
Так, одночлены, приведенные выше, под буквами а), б), в), г) и е) записаны в стандартном виде, а одночлены под буквами д) и ж) требуется привести к стандартному виду, т. е. к такому виду, когда на первом месте стоит числовой множитель, а за ним записывают буквенные множители с их показателями, причем, буквенные множители стоят в алфавитном порядке. Приведем одночлены д) и ж) к стандартному виду.
д) 2a2∙(-3,5b)3=2a 2∙(-3,5)3∙b3=-2a2∙3,5∙3,5∙3,5∙b3=-85,75a2b3;
ж) 8ac∙2,5a2∙(-3c3)=-8∙2,5∙3a3c3=-60a3c3.
III. Сумму показателей степеней всех переменных, входящих в состав одночлена, называют степенью одночлена.
Примеры. Какую степень имеют одночлены а) — ж)?
а) a. Первую;
б) ab. Вторую: а в первой степени и b в первой степени-сумма показателей 1+1=2;
в) 12. Нулевую, так как буквенных множителей нет;
г) -3c. Первую;
д) -85,75a2b3. Пятую. Мы привели этот одночлен к стандартному виду, имеем
е) -123,45xy5z. Седьмую. Сложили показатели степеней буквенных множителей: 1+5+1=7;
ж) -60a3c3. Шестую, так как сумма показателей буквенных множителей 3+3=6.
IV. Одночлены, имеющие одинаковую буквенную часть, называются подобными одночленами.
Пример. Указать подобные одночлены среди данных одночленов 1) -7).
1) 3aabbc; 2) -4,1a3bc; 3) 56a2b2c; 4) 98,7a2bac; 5) 10aaa2x; 6) -2,3a4x; 7) 34x2y.
Приведем одночлены 1), 4) и 5) к стандартному виду. Тогда строчка данных одночленов будет выглядеть так:
1) 3a2b2c; 2) -4,1a3bc; 3) 56a2b2c; 4) 98,7a3bc; 5) 10a4x; 6) -2,3a4x; 7) 34x2y.
Подобными будут те, которые имеют одинаковую буквенную часть, т.е. 1) и 3); 2) и 4); 5) и 6).
1) 3a2b2c и 3) 56a2b2c;
2) -4,1a3bc и 4) 98,7a3bc;
5) 10a4x и 6) -2,3a4x.
Очень большие и очень малые числа принято записывать в стандартном виде: a∙10n, где 1≤а<10 и n (натуральное или целое) – есть порядок числа, записанного в стандартном виде.
Например, 345,7=3,457∙102; 123456=1,23456∙105; 0,000345=3,45∙10-4.
Примеры.
Записать в стандартном виде число: 1) 40503; 2) 0,0023; 3) 876,1; 4) 0,0000067.
Решение.
1) 40503=4,0503·104;
2) 0,0023=2,3∙10-3;
3) 876,1=8,761∙102;
4) 0,0000067=6,7∙10-6.
Еще примеры на стандартный вид числа.
5) Число молекул газа в 1 см3 при 0°С и давлении 760 мм.рс.ст равно
27 000 000 000 000 000 000. Записать это число в стандартном виде.
Решение.
27 000 000 000 000 000 000=2,7∙1019.
6) 1 парсек (единица длины в астрономии) равен 30 800 000 000 000 км. Записать это число в стандартном виде.
Решение.
1 парсек=30 800 000 000 000=3,08∙1013 км.
В тему:
Киловатт-час — это внесистемная единица энергии или работы, применяется в электротехнике, обозначается кВт·ч.
1 кВт·ч=3,6∙106 Дж (Джоулей).
I. Определение. (- n)-й степенью (n – натуральное) числа а, не равного нулю, считается число, обратное n-й степени числа а:
Примеры. Вычислить:
Решение.
II. Следующая формула позволяет заменить обыкновенную дробь с отрицательным показателем на обратную ей дробь с положительным показателем:
Примеры. Вычислить:
Решение.
Свойства степени с натуральным показателем справедливы и для степеней с любым показателем.
Свойства степени с натуральным показателем с примерами смотрите в предыдущем уроке здесь.
Примеры на все свойства степени.
Упростить:
Решение.
При решении 7) примера I способом мы использовали свойства умножения и деления степеней с одинаковыми основаниями: am∙an=am+n и am:an=am-n. При решении II способом мы использовали понятие степени с отрицательным показателем: и свойство произведения степеней с одинаковыми основаниями: am∙an=am+n .
Пример 8 ) решаем так же, как решали пример 7) вторым способом.
В примере 9) представим 73как 72∙7, а степень 45как 43∙42, а затем сократим дробь на (72∙43).
В 10) примере применим формулу степени произведения: (ab)n=an∙bn, а затем сократим дробь на (26∙35).
I. Произведение n сомножителей, каждый из которых равен а называется n-й степенью числа а и обозначается аn.
Примеры. Записать произведение в виде степени.
1) mmmm; 2) aaabb; 3) 5·5·5·5·ccc; 4) ppkk+pppk-ppkkk.
Решение.
1) mmmm=m4, так как, по определению степени, произведение четырех сомножителей, каждый из которых равен m, будет четвертой степенью числа m.
2) aaabb=a3b2; 3) 5·5·5·5·ccc=54c3; 4) ppkk+pppk-ppkkk=p2k2+p3k-p2k3.
II. Действие, посредством которого находится произведение нескольких равных сомножителей, называется возведением в степень. Число, которое возводится в степень, называется основанием степени. Число, которое показывает, в какую степень возводится основание, называется показателем степени. Так, аn – степень, а – основание степени, n – показатель степени. Например:
23 — это степень. Число 2 — основание степени, показатель степени равен 3. Значение степени 23равно 8, так как 23=2·2·2=8.
Примеры. Написать следующие выражения без показателя степени.
5) 43; 6) a3b2c3; 7) a3-b3; 8 ) 2a4+3b2.
Решение.
5) 43=4·4·4; 6) a3b2c3=aaabbccc; 7) a3-b3=aaa-bbb; 8) 2a4+3b2=2aaaa+3bb.
III. а0=1 Любое число (кроме нуля) в нулевой степени равно единице. Например, 250=1.
IV. а1=а Любое число в первой степени равно самому себе.
V. am∙an=am+n При умножении степеней с одинаковыми основаниями основание оставляют прежним, а показатели складывают.
Примеры. Упростить:
9) a·a3·a7; 10) b0+b2·b3; 11) c2·c0·c·c4.
Решение.
9) a·a3·a7=a1+3+7=a11; 10) b0+b2·b3=1+b2+3=1+b5;
11) c2·c0·c·c4=1·c2·c·c4=c2+1+4=c7.
VI. am:an=am— n При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.
Примеры. Упростить:
12) a8:a3; 13) m11:m4; 14) 56:54.
12) a8:a3=a8-3=a5; 13) m11:m4=m11-4=m7; 14) 56:54=52=5·5=25.
VII. (am)n=amn При возведении степени в степень основание оставляют прежним, а показатели перемножают.
Примеры. Упростить:
15) (a3)4; 16) (c5)2.
15) (a3)4=a3·4=a12; 16) (c5)2=c5·2=c10.
Обратите внимание, что, так как от перестановки множителей произведение не меняется, то:
15) (a3)4=(a4)3; 16) (c5)2=(c2)5.
VIII. (a∙b)n=an∙bn При возведении произведения в степень возводят в эту степень каждый из множителей.
Примеры. Упростить:
17) (2a2)5; 18) 0,26·56; 19) 0,252·402.
Решение.
17) (2a2)5=25·a2·5=32a10; 18) 0,26·56=(0,2·5)6=16=1;
19) 0,252·402=(0,25·40)2=102=100.
IX. При возведении в степень дроби возводят в эту степень и числитель и знаменатель дроби.
Примеры. Упростить:
Решение.
Функцию вида y=x3 называют кубической функцией. Графиком кубической функции является кубическая парабола, проходящая через начало координат. Ветви кубической параболы y=x3 находятся в I и III четвертях.
Построение графика кубической функции y=x3
Составим таблицу значений функции y=x3 для х=0, х=±1, х=±2.
x | y=x3
0 | 0³=0 Точка О(0; 0)
1 | 1³=1 Точка А(1; 1)
-1 | (-1)³=-1 Точка С(-1; -1)
2 | 2³=8 Точка В(2; 8 )
-2 | (-2)³=-8 Точка D(-2; -8)
Функцию вида y=x2 называют квадратной функцией. Графиком квадратной функции является парабола с вершиной в начале координат. Ветви параболы y=x2 направлены вверх.
Построение графика функции y=x2. Составим таблицу значений функции для х=0, х=±1, х=±2, х=±3.
х | y=x²
0 | 0²=0
1 | 1²=1 Точка А(1; 1)
-1 | (-1)²=1 Точка А1(-1; 1)
2 | 2²=4 Точка В(2; 4)
-2 | (-2)²=4 Точка В1(-2; 4)
3 | 3²=9 Точка С(3; 9)
-3 | (-3)²=9 Точка С1(-3; 9)
data-ad-client=»ca-pub-8602906481123293″
data-ad-slot=»2890988705″>
1) Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого выражения на второе плюс квадрат второго выражения.
(a+b)2 = a2+2ab+b2
a) (x + 2y)2 = x2 + 2 ·x·2y + (2y)2 = x2 + 4xy + 4y2
б) (2k + 3n)2 = (2k)2 + 2·2k·3n + (3n)2 = 4k2 + 12kn + 9n2
2) Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого выражения на второе плюс квадрат второго выражения.
(a-b)2 = a2-2ab+b2
а) (2a – c)2 = (2a)2-2·2a·c + c2 = 4a2 – 4ac + c2
б) (3a – 5b)2 = (3a)2-2·3a·5b + (5b)2 = 9a2 – 30ab + 25b2
3) Разность квадратов двух выражений равна произведению разности самих выражений на их сумму.
a2–b2 = (a–b)(a+b)
a) 9x2 – 16y2 = (3x)2 – (4y)2 = (3x – 4y)(3x + 4y)
б) (6k – 5n)( 6k + 5n) = (6k)2 – (5n)2 = 36k2 – 25n2
4) Куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.
(a+b)3 = a3+3a2b+3ab2+b3
a) (m + 2n)3 = m3 + 3·m2·2n + 3·m·(2n)2 + (2n)3 = m3 + 6m2n + 12mn2 + 8n3
б) (3x + 2y)3 = (3x)3 + 3·(3x)2·2y + 3·3x·(2y)2 + (2y)3 = 27x3 + 54x2y + 36xy2 + 8y3
5) Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.
(a-b)3 = a3-3a2b+3ab2-b3
а) (2x – y)3 = (2x)3-3·(2x)2·y + 3·2x·y2 – y3 = 8x3 – 12x2y + 6xy2 – y3
б) (x – 3n)3 = x3-3·x2·3n + 3·x·(3n)2 – (3n)3 = x3 – 9x2n + 27xn2 – 27n3
6) Сумма кубов двух выражений равна произведению суммы самих выражений на неполный квадрат их разности.
a3+b3 = (a+b)(a2–ab+b2)
a) 125 + 8x3 = 53 + (2x)3 = (5 + 2x)(52 — 5·2x + (2x)2) = (5 + 2x)(25 – 10x + 4x2)
б) (1 + 3m)(1 – 3m + 9m2) = 13 + (3m)3 = 1 + 27m3
7) Разность кубов двух выражений равна произведению разности самих выражений на неполный квадрат их суммы.
a3-b3 = (a-b)(a2+ab+b2)
а) 64с3 – 8 = (4с)3 – 23 = (4с – 2)((4с)2 + 4с·2 + 22) = (4с – 2)(16с2 + 8с + 4)
б) (3a – 5b)(9a2 + 15ab + 25b2) = (3a)3 – (5b)3 = 27a3 – 125b3
Дорогие друзья! Карта сайта поможет вам выбрать нужную тему.Страница 1 из 11
www.mathematics-repetition.com
Числовые и алгебраические выражения — урок. Алгебра, 7 класс.
Числовым выражением называют всякую запись из чисел, знаков арифметических действий и скобок, составленную со смыслом.
Например:3+5⋅7−4 — числовое выражение;
3+:−5 — не числовое выражение, а бессмысленный набор символов.
Очень часто вместо конкретных чисел употребляются буквы, тогда получается алгебраическое выражение.
Алгебраическим выражением называется запись из букв, знаков арифметических действий, чисел и скобок, составленная со смыслом.
Например:a2−3b — алгебраическое выражение.
Поскольку буквам, входящим в состав алгебраического выражения, можно придавать различные числовые значения (т. е. можно менять значения букв), эти буквы называют переменными.
Алгебраические выражения могут быть очень громоздкими, и алгебра учит их упрощать, используя правила, законы, свойства, формулы.
При упрощении вычислений часто используются законы сложения и умножения.
Законы сложения
1) От перемены мест слагаемых сумма не изменяется, т. е.
a+b=b+a — переместительный закон сложения.
2) Чтобы к сумме двух слагаемых прибавить третье слагаемое, можно к первому слагаемому прибавить сумму второго и третьего слагаемых, т. е.
a+b+c=a+b+c — сочетательный закон сложения.
Законы умножения1) От перемены мест множителей произведение не меняется, т. е.
a⋅b=b⋅a — переместительный закон умножения.
2) Произведение не зависит от группировки его сомножителей, т. е.
a⋅b⋅c=a⋅b⋅c — сочетательный закон умножения.
3) Произведение суммы нескольких чисел на какое-нибудь число равно сумме произведений каждого слагаемого на это число, т. е.
a+b⋅c=ac+bc — распределительный закон умножения относительно сложения.
В результате упрощений числового выражения получается число, которое называют значением числового выражения.
Выполнив указанные действия в первом примере, получим
3+5⋅7−4=18.
Число \(18\) в ответе есть значение данного числового выражения.
О значении алгебраического выражения можно говорить только при конкретных значениях входящих в него букв.
Например, алгебраическое выражение a2−3b при \(a=-16\) и \(b=-14\) имеет значение \(298\), т. к.
a2−3b=−162−3⋅−14=256+42=298,
а вот алгебраическое выражение a2−3a+2 при \(a=-4\) имеет значение \(-6,5\),
т. к. −42−3−4+2=16−3−2=13−2=−6,5.
И это же алгебраическое выражение a2−3a+2 при \(a=-2\) не имеет смысла, т. к. a+2=−2+2=0, т. е. будет деление на ноль.
Обрати внимание!
А на ноль делить нельзя!
Вывод:если при конкретных значениях букв алгебраическое выражение имеет числовое значение, то указанные значения переменных называют допустимыми;
если же при конкретных значениях букв алгебраическое выражение не имеет смысла, то указанные значения переменных называют недопустимыми.
Так, в примере a2−3a+2 значение \(a=-4\) — допустимое, азначение \(a=-2\) — недопустимое, т. к. при нём будет деление на ноль, а делить на ноль нельзя!
www.yaklass.ru
Как Упростить Выражение 7 Класс Алгебра
МАТЕМАТИКА | ТОП-5 ОШИБОК
ЗАПИШИСЬ на уроки по математике в школу TutorOnline: bit.ly/2tBtdGJ Видео которое все так долго ждали. Разберём..
Vor year
Алгебра 7. Урок 3 — Многочлены
Дается определение многочлена, степени многочлена, его стандартного вида. Поясняются на примерах правила…
Vor 2 years
de-film.com
Упрощение выражений. Видеоурок. Идеи и смыслы
Сегодня мы поговорим о часто встречающейся в школьных учебниках задаче – упростить выражение. Сначала научимся отличать сложное выражение от простого. Иногда это явно видно. Например, рассмотрим тождество: .
В данном примере очевидно, что выражение в правой части проще, чем выражение в левой. Но иногда понять это сразу сложно. Упростить выражение – это значит уменьшить количество операций, которые необходимо сделать, чтобы вычислить его значение при конкретных значениях переменных. Например, возьмем формулы сокращенного умножения: . Для вычисления выражения в левой части нужно выполнить операций: , а для вычисления значения выражения в правой части – операции (вычитание и возведение в квадрат). То есть мы явно упростили выражение: вместо операций нужно сделать . Кажется, что разница между и небольшая, но в зависимости от значений переменных вычисления могут значительно усложниться при подсчете вручную. Кроме того, если речь идет, например, о компьютерных вычислениях и нам нужно вычислить миллион раз значение выражения при различных значениях переменных , то разница будет в выполненных операций.
Если мы понимаем закон или формулу, то для нас это просто. Рассмотрим ряд чисел: , , , , , , , , , , ,… Сложно ли предсказать в этом ряду следующее число? Некоторые могут сказать, что это невозможно, но на самом деле это числа Фибоначчи: такая последовательность задается формулой . Зная формулу, предсказать следующее число не составит труда, нужно просто сложить два предыдущих.
Так происходит всегда: когда мы узнаем закон, то, что казалось пугающим, становится понятным и упрощенным. Рассмотрим еще один пример. Есть такая задача: какой номер у парковочного места, в котором припаркован автомобиль (рис. 1)? Дайте ответ в течение секунд.
Рис. 1. Иллюстрация к задаче
Кажется, что записан странный набор чисел: , , , , …, . Но если понять, что на эти номера мы смотрим сверху вниз, то все становится просто. На самом деле это: , , , , , . Тогда номер очевиден – .
Еще один пример, теория эволюции Ч. Дарвина (рис.2):
Рис. 2. Теория эволюции Ч. Дарвина
До него Линней занимался классификацией (рис. 3):
Рис. 3. Классификация Линнея
Главным достижением биологии является упрощение. Есть царства, типы, классы и т.д. И каждый живой организм принадлежит какой-то ветке на этом дереве. Но классификация не внесла ясность, а вот когда возникла теория Дарвина, тогда стало понятно, почему такое многообразие есть и как оно возникает. Еще один пример из географии. Существует теория – карта. Без нее тяжело найти путь из одного места в другое, но с ней это становится просто.
Важно отметить, что когда мы говорим о порядке, то подразумеваем его субъективность. Если, например, человек не знает чисел, то таблички на домах для него не вносят никакого порядка, увидев знаки , , он не сможет понять, где находится дом .
В математике то, что упрощает вычисления, – это таблица умножения и алгоритм умножения в столбик. А само умножение – это упрощение многократного сложения: . А степень – это упрощение многократного умножения: . Зачем мы привели столько примеров из разных областей? Чтобы показать, что любая теория – это и есть упрощение.
Если рассмотреть мозг как механизм для выживания, то мозг все время создает теории. Так как помнить все невозможно, нужно что-то забывать. Если мы будем помнить все, то в каждый момент нам будет сложно сфокусироваться на происходящем. Но, с другой стороны, нам нужно помнить то, что было, чтобы использовать предыдущий опыт. Получилась противоречивая задача: нужно и забывать, и помнить. Поэтому выход – создание теорий, то есть помнить только существенное. Для того чтобы понять, что такое, например, стол, достаточно показать несколько примеров. Если мы покажем два стола и скажем, что и то, и то – стол, то возникнет идея стола. Или когда ребенок показывает на лужу и говорит, что это вода, для него это возникновение идеи (теории) воды, он понял, что и в луже вода, и в стакане вода, и из-под крана течет тоже вода.
Иногда сформулировать какое-то определение понятия сложнее, чем научиться определять, соответствует ли понятию объект. Если попробовать точно сформулировать ребенку, кто тетя, а кто дядя, это вызовет затруднение. При этом ребенок на основе жизненного опыта строит теорию, помогающую ему практически безошибочно отличать тетю от дяди.
В математике мы тоже часто сталкиваемся с объектами, которые мы не определяем. Например, множество (точка, линия и др.), у этого понятия нет определения, но мы все понимаем, что это. Если говорить про множества, то любое множество – это тоже теория. Например, синяя рубашка и синий автомобиль (рис. 1), что у них общего?
Рис. 1. Иллюстрация к примеру
У них общее свойство, они синие. То есть не только при помощи свойства можно определить множество, но и наоборот. Например, Хлестаков и городничий из комедии Н.В. Гоголя «Ревизор» (рис. 2, 3). С одной стороны, совершенно разные люди: один – дородный, опытный, сильный мужчина, второй – хлюпенький мальчишка. При помощи вопроса «Что у них общего?» можно определить, что такое коррупция. На коррупцию же не укажешь пальцем, а на них можно, оба берут деньги, пользуясь своей властью, что и есть коррупция.
Рис. 2. Антон Антонович Сквозник-Дмухановский, городничий
Рис. 3. Иван Александрович Хлестаков
Два многочлена равны, так как мы имеем некую теорию и знаем, как их преобразовать: , так как . Когда речь идет о выражениях, то упрощение – это уменьшение количества действий. В общем, для каждого понятно, что значит упростить. Это значит убрать все, что можно, не изменив суть изначального объекта. Хорошим примером полезного упрощения в математике также является задача Эйлера о 7 мостах.
Данная задача родилась в городе Калининграде (ранее – Кёнигсберг). Гуляя, жители придумали такую задачу: vожно ли обойти все мосты, при этом не проходя ни по одному мосту дважды (не повторяясь) (рис. 1)?
Рис. 1. Иллюстрация к задаче Эйлера
Решая эту задачу, Эйлер предложил следующее: считать части города точками. Почему так можно сделать? Представим, что все части города мы начнем уменьшать, от этого задача не поменяется, ведь размеры частей города для решения задачи не важны. Значит, как бы мы ни уменьшали их, задача остается той же. То есть можно свести части города к точкам, а мосты – аналогично к линиям, соединяющим эти точки. Тогда получим следующий чертеж (рис. 2).
Рис. 2. Иллюстрация к задаче
Подобные чертежи называют графами. У него вершины и ребер. Эйлер получил решение для данной задачи и обобщил его для произвольного графа. Один из пунктов, которые он получил состоит в следующем. Когда мы говорим, что можно обойти все, проходя ровно один раз, то задачу можно переформулировать так: граф можно нарисовать, не отрывая руки от бумаги, причём каждую линию – ровно один раз. Эйлер доказал, что если в графе есть больше двух нечетных вершин (вершин, из которых выходит нечетное количество линий), то такая задача неразрешима. В нашей задаче все вершины нечётные, значит, ответ на вопрос задачи: обойти таким образом мосты нельзя.
Представим, что у нас есть грузовик и нам нужно развозить что-то по городам, которые соединены дорогами. Естественно, что в таком случае не хочется раза заезжать в один и тот же город. Пользуясь доказанным фактом, мы сможем узнать, когда это невозможно. Теория графов имеет большое применение, например, в информатике (нейронные сети и др.).
Ссылки на материалы сайта InternetUrok
Математика 2 класс:
- Порядок действий в выражениях со скобками
- Числовые выражения. Сравнение числовых выражений
- Буквенные выражения
- Составление выражений на умножение и нахождение их значений
Математика 3 класс:
- Выражение с переменной
Математика 4 класс:
- Выражение и его значение. Порядок выполнения действий
- Выражение. Равенство. Неравенство. Уравнение
Математика 5 класс:
- Числовые и буквенные выражения
- Упрощение выражений
- Математическая запись
- Формулы
Математика 6 класс:
- Дробные выражения
- Раскрытие скобок
- Приведение подобных слагаемых (Слупко М.В.)
- Приведение подобных слагаемых (Вольфсон Г.И.)
- Коэффициент
Алгебра 7 класс:
- Числовые и алгебраические выражения (В.А. Тарасов)
- Числовые выражения; действия с натуральными числами (В.А. Тарасов)
- Числовые выражения; действия с дробными числами (В.А. Тарасов)
- Математический язык
- Математическая модель
- Числовые и алгебраические выражения в математических моделях и задачах
- Понятие одночлена. Стандартный вид одночлена
- Приведение одночлена к стандартному виду; задачи
- Сложение и вычитание одночленов
- Задачи на сложение и вычитание одночленов
- Умножение одночленов, возведение в натуральную степень
- Деление одночлена на одночлен
- Решение задач по теме «Одночлены. Арифметические операции над одночленами»
- Степень как частный случай многочлена
- Приведение многочленов к стандартному виду. Типовые задачи
- Сложение и вычитание многочленов. Типовые задачи
- Умножение многочлена на одночлен. Типовые задачи
- Умножение двучленов. Типовые задачи
- Умножение трёхчленов. Типовые задачи
- Умножение многочлена на многочлен
- Умножение многочленов в текстовых задачах
- Умножение многочленов в задачах с элементами геометрии
- Формулы сокращённого умножения. Квадрат суммы и квадрат разности
- Формулы сокращённого умножения. Разность квадратов
- Формулы сокращённого умножения. Разность кубов и сумма кубов
- Совместное применение формул сокращённого умножения
- Формулы сокращённого умножения в задачах повышенной сложности. Ч.1
- Формулы сокращённого умножения в задачах повышенной сложности. Ч.2
- Деление многочлена на одночлен
- Что такое разложение многочленов на множители и зачем оно нужно
- Разложение многочленов на множители. Вынесение общего множителя за скобки
- Разложение многочленов на множители. Способ группировки
- Способ группировки в более сложных задачах и уравнениях
- Разложение многочленов на множители в комбинации с формулами сокращённого умножения
- Разложение многочленов на множители. Метод выделения полного квадрата. Комбинация методов
- Алгебраические дроби. Сокращение алгебраических дробей
- Алгебраические дроби. Сокращение алгебраических дробей в более сложных случаях
- Тождества
- Числовые и алгебраические выражения, математические модели
- Степень с натуральным показателем и её свойства
- Одночлены
- Многочлены
- Формулы сокращённого умножения
- Разложение многочленов на множители, сокращение дробей
Алгебра 8 класс:
- Преобразование рациональных выражений
- Преобразование более сложных рациональных выражений
- Преобразование выражений с корнями (вынесен
interneturok.ru