cart-icon Товаров: 0 Сумма: 0 руб.
г. Нижний Тагил
ул. Карла Маркса, 44
8 (902) 500-55-04

Наиболее легко отдают электроны атомы рубидия кальция стронция цезия: а) рубидия б) кальция в) стронция г) цезия

Содержание

Новая шкала электроотрицательностей перевернула химию высоких давлений

Профессор Сколтеха и его китайские коллеги пересмотрели ключевое понятие химии — электроотрицательность — и определили эту величину для всех элементов при различных давлениях. В рамках обновлённой концепции электроотрицательности получили теоретическое обоснование многочисленные аномалии химии высоких давлений. Исследование опубликовано в престижном журнале Proceedings of the National Academy of Sciences of the USA.

Электроотрицательность и смежное понятие химической жёсткости — фундаментальные свойства элементов, которые во многом определяют, как и в какие реакции вступают атомы. «Если бросить в стакан воды кусок медной проволоки, то ничего интересного не произойдёт. Если же в воду бросить кусок натрия, то сразу начнётся бурная реакция, в результате которой выделится столько теплоты, что натрий расплавится. Всё дело в том, что у натрия очень низкая электроотрицательность: он энергично отдаёт электроны другим атомам», — комментирует соавтор исследования профессор Сколтеха Артём Оганов.

Электроотрицательность — возможно, самое важное для химии свойство атома — его готовность отдавать (если она низкая) или отнимать (высокая) электроны. Эта величина обретает смысл в сравнении: чем сильнее она отличается у двух элементов, тем более бурно реагируют их атомы. Поэтому наиболее реактивные вещества — фтор и цезий, чемпионы с самой высокой и самой низкой электроотрицательностью соответственно. Их реакционная способность столь велика, что в природе ни тот ни другой в чистом виде не встречается.

Электроотрицательности атомов дают весьма неплохое представление не только о том, что с чем реагирует, но и каковы тип химической связи и свойства получающихся в результате соединений. Но всё это — при нормальных условиях.

«Мы очень много знаем про поведение вещества при атмосферном давлении, но ведь это, в сущности, нетипичная ситуация, — рассуждает Оганов. — Большая часть вещества Земли и других планет находится под колоссальным давлением. В центре Земли, например, оно почти в 4 млн раз выше атмосферного».

Когда поведение вещества под такими давлениями научились воспроизводить в лабораториях и моделировать на компьютере, в том числе изобретённым Огановым методом предсказания кристаллических структур USPEX, учёные стали одно за другим открывать экзотические явления, которые противоречат классическим представлениям.

В частности, под достаточно высоким давлением:

— Все вещества становятся металлами. Любопытно, что металл натрий при сжатии до 2 млн атмосфер сначала превращается в диэлектрик, а потом уже снова становится металлом при ещё более сильном сжатии.

— Инертные газы перестают быть инертными и образуют соединения. Даже гелий!

— Калий и некоторые другие элементы порождают странные, непериодические структуры, в которых часть атомов формирует каркас, а оставшиеся — заполняют полости и образуют в них цепочки. При этом периодичность каркаса и цепочки не совпадает, то есть у такой структуры нельзя выделить повторяющуюся элементарную ячейку.

— Многие вещества становятся электридами, то есть изгоняют электроны в пустоты решётки, что придаёт кристаллу причудливые свойства.

— Любая пара элементов, включая банальную систему «натрий — хлор» (поваренную соль), образует по неведомым правилам странные соединения, такие как Na3Cl и NaCl7. Среди такого рода аномальных веществ есть, кстати, рекордные высокотемпературные сверхпроводники.

— Возникают необычно высокие валентности. Цезий, например, становится пятивалентным, а медь — четырёхвалентной.

— Начинают реагировать элементы, которые не взаимодействуют при атмосферном давлении: медь — с бором, магний — с железом и т. д.

Оганову с коллегами удалось объяснить эти необычные явления за счёт пересмотра основополагающих понятий химии — электроотрицательности и химической жёсткости. Учёные заметили, что введённое в 1934 году Робертом Малликеном определение электроотрицательности принципиально применимо лишь при нулевом давлении. Модифицировав это определение, они рассчитали электроотрицательности (а также химические жёсткости) при давлениях от 0 до 5 млн атмосфер для всех элементов таблицы Менделеева вплоть до 96-го.

«Этими двумя параметрами в значительной степени определяются химические свойства атомов, и мы решили рассмотреть, как они меняются с ростом давления. Дело в том, что при сжатии атома конфигурация его электронов меняется. И, конечно, это отражается на его электроотрицательности», — говорит Оганов.

Расчёт электроотрицательности по Малликену отталкивается от энергии ионизации атома (насколько трудно оторвать от него электрон) и энергии сродства к электрону (насколько охотно атом присоединяет электрон из вакуума). Полусумма этих величин даёт электроотрицательность, а полуразность — химическую жёсткость, причём при нормальных условиях эти характеристики близки, потому что сродство к электрону у большинства атомов невелико. В результате, химики обычно не рассматривают химическую жёсткость. Но под высоким давлением всё меняется.

«При высоких давлениях эти два параметра ведут себя по-разному и имеют разный физический смысл: для твёрдого вещества химическая жёсткость — это ширина запрещённой зоны, а она определяет, будет это вещество металлом, неметаллом или полупроводником, — рассказывает Оганов.  — Электроотрицательность же имеет смысл химического потенциала электрона в атоме (для твёрдого тела она равна энергии Ферми). Её расчет под давлением должен учитывать два обстоятельства. Во-первых, под давлением невозможен вакуум — значит, стандартное определение потенциала ионизации и сродства к электрону неприменимо. Поэтому у нас в формуле вместо вакуума — электронный газ. Во-вторых, мы заменяем энергию ионизации и сродства в формуле на энтальпию, иначе предсказания стабильности элементов под давлением будут ложными».

При расчёте электроотрицательностей под высоким давлением учёные столкнулись не только с теоретическими сложностями. «Маллекиновская электроотрицательность — это характеристика витающего в пустоте атома, но если он находится под огромным давлением, значит, на него по определению давят другие атомы, — поясняет Оганов. — Недолго думая, мы поместили атомы в большую ячейку атомов гелия — это самое инертное, что у нас есть. К тому же у гелия маленькие атомы, поэтому давление распределяется равномерно».

Под давлением гелия исследователи рассчитали для каждого атома энергию — точнее, энтальпию — отрыва и присоединения электрона и по ней вычислили электроотрицательность и химическую жёсткость. «Работа шла с перерывами и заняла в общей сложности почти семь лет, — вспоминает Оганов. — Мы начали её, когда первый автор, Сяо Дун, был аспирантом в моей лаборатории. А закончили, когда он уже стал профессором. Тут выполнен огромный объём не только мыслительной работы, но и тяжёлых расчётов, но оно того стоило». Оказалось, что новая шкала этих величин успешно объясняет необычные явления неклассической химии.

Поскольку условным резервуаром электронов теперь служит электронный газ, логично, что атом с отрицательным показателем электроотрицательности будет отдавать электроны газу, с положительным — забирать, а с нулевым — находиться в равновесии с газом. Так вот у большинства металлов электроотрицательность оказывается близкой к нулю, и это прекрасно согласуется с тем, что их свойства обычно описываются через модель электронного газа.

Химические жёсткости элементов падают под давлением — ширина запрещённой зоны уменьшается, поэтому рано или поздно любой элемент становится металлом.

С ростом давления электроотрицательность тоже падает, атомы легче отдают электроны. Атомный остов сжимается, и остаётся всё меньше места для электронов. Так появляются электриды: в них электронам было некуда деться и они оказались вынуждены ютиться в пустотах решётки.

У кальция, бария, стронция, калия, натрия под давлением химическая жёсткость достигает очень низких значений, чем объясняется способность диспропорционировать на разные типы атомов и образование странных структур, состоящих из каркаса и цепочек, которые вместе образуют непериодическую кристаллическую структуру.

Под высоким давлением фтор остаётся чемпионом по электроотрицательности. А вот самым электроположительным атомом оказывается не цезий, а натрий. «А при ещё более экстремальных давлениях к нему присоединяется магний, что в каком-то смысле нарушает периодический закон, ведь магний — элемент другой группы таблицы Менделеева», — комментирует результаты Оганов. Столь низкая электроотрицательность натрия и магния под давлением делает их невероятно химически активными.

У никеля, палладия и платины две верхние электронные оболочки перераспределяются таким образом, что возникает полностью заполненная d-электронная оболочка. Поскольку заполненные оболочки обладают особой стабильностью, эти элементы становятся менее активными и перестают образовывать соединения с некоторыми элементами, с которыми при нормальном давлении реагируют.

Ещё большие последствия этот эффект имеет для соседних элементов: атомы, которым не хватает одного-двух электронов (кобальт, железо, родий, рутений, осмий, иридий), приобретают необычайно высокую электроотрицательность, сопоставимую с йодом и теллуром. А элементы, имеющие один-два «лишних» электрона (медь, серебро, цинк, кадмий) приобретают очень низкие электроотрицательности.

Между магнием и железом под давлением разность электроотрицательностей растёт аж в четыре раза. Похожим образом обстоят дела с медью и бором. Отсюда фантастические соединения этих элементов.

«Мы провели множество тестов, — рассказывает Оганов. — И да, медь действительно легко вступает в реакции с бором и другими элементами. А кобальт и родий запросто отбирают электроны у многих металлов. Мы думаем, что всё это может быть очень важным для геохимии, меняя геохимическое поведение и судьбу многих элементов».

«Другое наблюдение: по мере снижения химической жёсткости падает степень локализации электронов на связях, и образуются так называемые многоцентровые связи. С этим, в частности, связано образование экзотических соединений типа NaCl7», — говорит первый автор работы, профессор Нанкайского университета (Китай) Сяо Дун.

«И последнее: хотя атом отдаёт каждый следующий электрон неохотнее, чем предыдущий, уменьшение электроотрицательности и химической жёсткости под давлением ведёт к тому, что этот эффект ослабляется, и именно поэтому становятся возможны пятивалентная форма цезия, четырёхвалентная медь и проч. — всё это тоже вытекает из обновлённой шкалы электроотрицательностей», — заключает исследователь.

Таким образом, пересмотр ключевых понятий химии не только позволяет объяснить в рамках единой концепции массу странных явлений под высоким давлением, но и порождает новые гипотезы в области геологии, планетологии и других наук.

 

Контакты:
Skoltech Communications
+7 (495) 280 14 81

*protected email*

*protected email*

Пятигорский медико-фармацевтический институт – филиал Волгоградского государственного медицинского университета

Согласно Приказу Министерства здравоохранения и социального развития Российской Федерации № 434 от 28 апреля 2012 года 1 октября 2012 года завершилась реорганизация государственного бюджетного образовательного учреждения высшего профессионального образования «Волгоградский государственный медицинский университет» Министерства здравоохранения и социального развития Российской Федерации и государственного бюджетного образовательного учреждения высшего профессионального образования «Пятигорская государственная фармацевтическая академия» Министерства здравоохранения и социального развития Российской Федерации в форме присоединения второго учреждения к первому с последующим образованием на основе присоединённого учреждения обособленного подразделения (филиала).

Определено, что полное наименование филиала вуза (бывшей Пятигорской государственной фармацевтической академии), с учетом разделения Министерства здравоохранения и социального развития Российской Федерации на два министерства, следующее:

Пятигорский филиал государственного бюджетного образовательного учреждения высшего профессионального образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Сокращённое наименование: «Пятигорский филиал ГБОУ ВПО ВолгГМУ Минздрава России».

Согласно Приказу Министерства здравоохранения Российской Федерации № 51 от 04 февраля 2013 года указаны изменения, которые вносятся в устав государственного бюджетного образовательного учреждения высшего профессионального образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации.

В пункте 1.10 абзацы третий и четвёртый изложить в следующей редакции:

«полное наименование:

Пятигорский медико-фармацевтический институт — филиал государственного бюджетного образовательного учреждения высшего профессионального образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации»,

сокращённое наименование:

«Пятигорский медико-фармацевтический институт — филиал ГБОУ ВПО ВолгГМУ Минздрава России».

Переименование произведено с 14.03.2013.

В соответствии с приказом по Университету от «15» июля 2016  г. №1029-КМ «О введение в действие новой редакции Устава и изменении наименования Университета» с 13.07.2016 г. в связи с переименованием Университета  считать:

полным наименованием Университета: федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации;

— сокращенным наименованием Университета: ФГБОУ ВО ВолгГМУ Минздрава России;

полным наименованием филиала Университета: Пятигорский медико-фармацевтический институт – филиал федерального государственного бюджетного образовательного учреждения высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации;

— сокращенным наименованием филиала Университета: Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО ВолгГМУ Минздрава России.

Переименование произведено с 13.07.2016.

Узнать больше о вузе

Противодействие коррупции

     Платежные реквизиты вуза     

Части периодической таблицы

Части периодической таблицы

Периодические тренды — Электронное сродство

(1) (2)
(13)
(14) (15) (16) (17) (18)
(3)
(4)
(5) (6) (7) (8) (9) (10) (11) (12)
1

Х

-73

Он

0

2

Ли

-60

Быть

18

Б

-27

С

-122

Н

7

О

-141

Ф

-328

Не

29

3

На

-53

мг

21

Ал

-44

Си

-134

Р

-44

С

-200

Кл

-349

Ар

35

4

К

-48

Са

-2

Sc

хх

Ти

хх

В

хх

Кр

хх

Мн

хх

Фе

хх

Со

хх

Ni

хх

Медь

хх

Цинк

хх

Га

-30

Ге

-116

Как

-78

Se

-195

Бр

-325

Кр

39

5

руб

-47

Старший

-5

Д

хх

Зр

хх

хх

Пн

хх

ТК

хх

Ру

хх

Rh

хх

ПД

хх

Аг

хх

CD

хх

В

-30

Сн

-116

Сб

-101

Те

-190

я

-295

Хе

41

6

Cs

-46

Ба

46

Ла

хх

 

Хф

хх

Та

хх

Вт

хх

Ре

хх

ОС

хх

Ир

хх

Пт

хх

Аи

хх

рт. ст.

хх

Тл

-20

Пб

-35

Би

-91

По

-183

В

-270

РН

41

7

Пт

хх

Ра

хх

Ас

хх

 

Рф

хх

Дб

хх

Сг

хх

Бх

хх

Гс

хх

Мт

хх

Дс

хх

хх

Ууб

хх

Уук

хх

6  

Се

хх

Пр

хх

Нд

хх

вечера

хх

См

хх

ЕС

хх

Гд

хх

Тб

хх

Дай

хх

Хо

хх

Er

хх

Тм

хх

Ыб

хх

Лу

хх

7  

Т

хх

Па

хх

У

хх

Нп

хх

Пу

хх

Ам

хх

См

хх

Бк

хх

См.

хх

Эс

хх

FM

хх

Мд

хх

хх

Лр

хх

Сродство к электрону, указанное в единицах килоджоули на моль (кДж/моль).

Данные взяты у Джона Эмсли, The Elements , 3-е издание. Оксфорд: Clarendon Press, 1998.

.

 

сродство к электрону элемента представляет собой изменение энергии сопровождающее присоединение электрона к атому газа фаза для получения отрицательно заряженного аниона:

X(g)  +  e Х (г)

Сродство к электрону обычно имеет отрицательное значение, так как энергия обычно высвобождается (экзотермическое изменение энергии), когда электрон присоединяется к нейтральному атому. Если полученный анион стабилен, значение сродства к электрону будет отрицательным; тем стабильнее анион, тем больше будет отрицательное число. Если полученный анион нестабилен, значение сродства к электрону будет положительным.

Сродство к электрону обычно увеличивается снизу вверх внутри группы (то есть идет к большим отрицательным числам), и увеличивается слева направо в пределах периода .

Все галогены группы 7А имеют большой отрицательный электрон. сродством, так как они находятся всего в одном электроне от наличия конфигурация благородного газа, они легко принимают другой электрон генерируют стабильные галогенид-анионы. Благородные газы уже имеют полный набор электронов, и дополнительный электрон должен войти в следующая самая высокая оболочка, которая будет стоить энергии, чтобы начать заселяться.

Тенденции для сродства к электрону не такие гладкие, как для радиус атома, ионизация энергия и электроотрицательность, как видно из следующих графиков.

 

 

 

 

 

 

 

Химическое соединение | Определение, примеры и типы

молекула метана

Посмотреть все СМИ

Ключевые люди:
Антуан Лавуазье Луи Бернар Гайтон де Морво Карл Вильгельм Шееле Мартин Генрих Клапрот Николя-Луи Воклен
Похожие темы:
химическая связь химический анализ координационное соединение металлоорганическое соединение химическая реакция

Просмотреть весь связанный контент →

Резюме

Прочтите краткий обзор этой темы

химическое соединение , любое вещество, состоящее из идентичных молекул, состоящих из атомов двух или более химических элементов.

Вся материя во Вселенной состоит из атомов более 100 различных химических элементов, которые встречаются как в чистом виде, так и в виде химических соединений. Образец любого данного чистого элемента состоит только из атомов, характерных для этого элемента, и атомы каждого элемента уникальны. Например, атомы, составляющие углерод, отличаются от атомов, составляющих железо, которые, в свою очередь, отличаются от атомов золота. Каждый элемент обозначается уникальным символом, состоящим из одной, двух или трех букв, возникающих либо из текущего имени элемента, либо из его исходного (часто латинского) имени. Например, символы углерода, водорода и кислорода — это просто C, H и O соответственно. Символом железа является Fe, от его первоначального латинского названия 9.1202 железо . Фундаментальный принцип науки химии состоит в том, что атомы различных элементов могут соединяться друг с другом, образуя химические соединения. Метан, например, который образуется из элементов углерода и водорода в соотношении четыре атома водорода на каждый атом углерода, как известно, содержит различные молекулы CH 4 . Формула соединения, такая как CH 4 , указывает типы присутствующих атомов с нижними индексами, представляющими относительное количество атомов (хотя цифра 1 никогда не пишется).

Исследуйте магнитоподобную ионную связь, образующуюся при переносе электронов от одного атома к другому

Просмотреть все видео к этой статье

Посмотрите, как работают молекулярные связи, когда два атома водорода соединяются с атомом серы, образуя сероводород

Просмотреть все видео к этой статье

Вода , представляющий собой химическое соединение водорода и кислорода в соотношении два атома водорода на каждый атом кислорода, содержит молекулы H 2 O. Хлорид натрия представляет собой химическое соединение, образованное из натрия (Na) и хлора (Cl) в соотношении 1:1. Хотя формула хлорида натрия — NaCl, соединение не содержит реальных молекул NaCl. Скорее, он содержит равное количество ионов натрия с положительным зарядом (Na + ) и ионы хлорида с отрицательным зарядом единицы (Cl ). ( См. ниже Тенденции химических свойств элементов для обсуждения процесса превращения незаряженных атомов в ионы [т. соединения: молекулярные (ковалентные) и ионные. Метан и вода состоят из молекул; то есть они являются молекулярными соединениями. Хлорид натрия, с другой стороны, содержит ионы; это ионное соединение.

Атомы различных химических элементов можно сравнить с буквами алфавита: так же, как буквы алфавита объединяются, образуя тысячи слов, атомы элементов могут соединяться различными способами, образуя множество соединений. . На самом деле известны миллионы химических соединений, и возможно еще много миллионов, но еще не открытых и не синтезированных. Большинство встречающихся в природе веществ, таких как древесина, почва и камни, представляют собой смеси химических соединений. Эти вещества можно разделить на составляющие их соединения физическими методами, то есть методами, которые не изменяют способ агрегации атомов внутри соединений. Соединения можно разложить на составляющие их элементы путем химических превращений. Химическое изменение (то есть химическая реакция) — это изменение организации атомов. Примером химической реакции является горение метана в присутствии молекулярного кислорода (O 2 ) с образованием диоксида углерода (CO 2 ) и воды. CH 4 + 2O 2 → CO 2 + 2H 2 O В этой реакции, которая является примером реакции горения, происходят изменения в том, как атомы углерода, водорода и кислорода связаны друг с другом. в соединениях.

Тест «Британника»

Типы химических реакций

Химические соединения демонстрируют ошеломляющий набор характеристик. При обычных температурах и давлениях некоторые из них являются твердыми, некоторые — жидкими, а некоторые — газообразными. Цвета различных соединений охватывают цвета радуги. Некоторые соединения очень токсичны для человека, тогда как другие необходимы для жизни. Замена только одного атома в соединении может быть причиной изменения цвета, запаха или токсичности вещества. Для того чтобы из этого большого разнообразия можно было извлечь некоторый смысл, были разработаны системы классификации. В приведенном выше примере соединения классифицируются как молекулярные или ионные. Соединения также классифицируются как органические или неорганические. Органические соединения ( см. ниже Органические соединения), названные так потому, что многие из них были первоначально выделены из живых организмов, обычно содержат цепочки или кольца атомов углерода. Из-за большого разнообразия способов, которыми углерод может связываться с самим собой и другими элементами, существует более девяти миллионов органических соединений. Соединения, которые не считаются органическими, называются неорганическими соединениями ( см. ниже Неорганические соединения).

В широких классификациях органических и неорганических веществ существует множество подклассов, в основном основанных на конкретных присутствующих элементах или группах элементов. Например, среди неорганических соединений оксиды содержат O 2- ионов или атомов кислорода, гидриды содержат ионы H или атомы водорода, сульфиды содержат ионы S 2- и так далее. К подклассам органических соединений относятся спирты (содержащие группу «ОН»), карбоновые кислоты (содержащие группу «СООН»), амины (содержащие группу «NH 2 ») и т. д.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Различные способности различных атомов объединяться в соединения лучше всего можно понять с точки зрения периодической таблицы. Периодическая таблица была первоначально построена для представления закономерностей, наблюдаемых в химических свойствах элементов ( см. химическая связь). Другими словами, по мере развития науки химии было замечено, что элементы можно группировать в соответствии с их химической реакционной способностью. Элементы со схожими свойствами перечислены в вертикальных столбцах периодической таблицы и называются группами. По мере раскрытия деталей строения атома стало ясно, что положение элемента в периодической таблице коррелирует с расположением электронов, которыми обладают атомы этого элемента (9). 1202 см. атом). В частности, было замечено, что электроны, определяющие химическое поведение атома, находятся в его самой внешней оболочке. Такие электроны называются валентными электронами.

Например, атомы элементов 1-й группы периодической таблицы имеют один валентный электрон, атомы элементов 2-й группы имеют два валентных электрона и так далее до 18-й группы, элементы которой содержат восемь валентных электронов. , достигается. Самое простое и наиболее важное правило для предсказания того, как атомы образуют соединения, состоит в том, что атомы склонны объединяться таким образом, что позволяют им либо опустошить свою валентную оболочку, либо заполнить ее (т. е. заполнить ее), в большинстве случаев имея в общей сложности восемь электронов. . Элементы в левой части периодической таблицы имеют тенденцию терять свои валентные электроны в химических реакциях. Например, натрий (в группе 1) имеет тенденцию терять свой единственный валентный электрон, образуя ион с зарядом +1. Каждый атом натрия имеет 11 электронов ( e ), каждый из которых имеет заряд -1, чтобы просто сбалансировать заряд +11 на его ядре. Потеря одного электрона оставляет 10 отрицательных зарядов и 11 положительных зарядов, что дает суммарный заряд +1: Na → Na + + e . Калий, расположенный непосредственно под натрием в группе 1, также образует в своих реакциях ионы +1 (K + ), как и остальные члены группы 1: рубидий (Rb), цезий (Cs) и франций (Fr). Атомы элементов в правом конце периодической таблицы, как правило, вступают в реакции, в результате которых они получают (или делят) достаточное количество электронов, чтобы завершить свою валентную оболочку. Например, кислород в 16-й группе имеет шесть валентных электронов и, следовательно, нуждается в еще двух электронах, чтобы завершить свою внешнюю оболочку. Кислород достигает такого расположения, реагируя с элементами, которые могут терять или делиться электронами. Атом кислорода, например, может реагировать с атомом магния (Mg) (в группе 2), принимая два валентных электрона магния, образуя Mg 2+ и O 2– ионов. (Когда нейтральный атом магния теряет два электрона, он образует ион Mg 2+ , а когда нейтральный атом кислорода получает два электрона, он образует ион O 2– .) Образующийся Mg 2+ и O 2- затем объединяют в соотношении 1: 1, чтобы получить ионное соединение MgO (оксид магния). (Хотя составной оксид магния содержит заряженные частицы, он не имеет суммарного заряда, поскольку содержит равные количества Mg 2+ и O 2– ионов.) Точно так же кислород реагирует с кальцием (чуть ниже магния в группе 2) с образованием CaO (оксида кальция). Кислород аналогичным образом реагирует с бериллием (Be), стронцием (Sr), барием (Ba) и радием (Ra), остальными элементами группы 2. Ключевым моментом является то, что, поскольку все элементы данной группы имеют одинаковое количество валентных электронов, они образуют аналогичные соединения.

Химические элементы можно классифицировать по-разному. Наиболее фундаментальное деление элементов на металлы, составляющие большинство элементов, и неметаллы. Типичными физическими свойствами металлов являются блестящий внешний вид, ковкость (способность превращаться в тонкий лист), пластичность (способность вытягиваться в проволоку) и эффективная тепло- и электропроводность. Важнейшим химическим свойством металлов является склонность отдавать электроны с образованием положительных ионов. Медь (Cu), например, является типичным металлом. Он блестящий, но легко тускнеет; это отличный проводник электричества и обычно используется для электрических проводов; и из него легко формуются изделия различной формы, такие как трубы для водопроводных систем. Медь содержится во многих ионных соединениях в виде Cu + или ион Cu 2+ .

Металлические элементы находятся слева и в центре таблицы Менделеева. Металлы групп 1 и 2 называются репрезентативными металлами; те, что находятся в центре периодической таблицы, называются переходными металлами. Лантаноиды и актиноиды, показанные под периодической таблицей, представляют собой особые классы переходных металлов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *